MTH 317/617 Homework #5

Due Date: October 20, 2023

1 Problems for Everyone

- 1. Write the following polynomials in the Taylor form, centered at z = 2.
 - (a) $p(z) = z^5 + 3z + 4$
 - (b) $p(z) = z^{10}$
 - (c) $p(z) = (z-1)(z-2)^3$.
- 2. If $p(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_0$ $(a_n \neq 0)$, then its reverse polynomial $p^*(z)$ is given by

$$p^*(z) = \overline{a_n} + \overline{a_{n-1}}z + \ldots + \overline{a_0}z^n.$$

- (a) Show that $p^*(z) = z^n \overline{p(1/\overline{z})}$.
- (b) Show that if p(z) has a zero at $z_0 \neq 0$ then $p^*(z)$ has a zero at $1/\overline{z_0}$.
- (c) Show that for |z| = 1, we have $|p(z)| = |p^*(z)|$.
- 3. Let f(z) be the rational function defined by

$$f(z) = \frac{2z+i}{(z^2+z)(1-z)^2}.$$

- (a) Find all of the poles of this function and their multiplicities.
- (b) Find a partial fraction decomposition of this function.
- (c) If ζ is a pole of f(z) then the coefficient of $\frac{1}{z-\zeta}$ in the partial fraction decomposition is called the residue of f(z) at ζ and is denoted by $\operatorname{Res}(\zeta)$. Find the residues for all of the poles of this function.
- 4. Let $f : \mathbb{C} \to \mathbb{C}$ be the complex cosine function $f(z) = \cos(z)$.
 - (a) Use the Cauchy-Riemann equations to show that $\cos(z)$ is an analytic function and prove that

$$\frac{df}{dz} = -\sin(z)$$

- (b) Compute the real and imaginary parts of the function $f(z^2)$.
- (c) Show that for $z \in \mathbb{C}$, $\cosh(z) = \cos(iz)$.
- 5. Prove that if $y \ge 0$ and $x \in \mathbb{R}$ then

$$|\cos(x+iy)| \le e^y$$
 and $|\sin(x+iy)| \le e^y$.

- 6. Prove the following identities for $z \in \mathbb{C}$:
 - (a) $\cosh^2(z) \sinh^2(z) = 1$
 - (b) $\cosh(z) = \cos(iz)$
 - (c) $\sinh(z) = -i\sin(iz)$
 - (d) $|\cosh(z)|^2 = \sinh^2(x) + \cos^2(y)$
 - (e) $|\sinh(z)|^2 = \sinh^2(x) + \sin^2(y)$
 - (f) $\overline{\sin(z)} = \sin(\overline{z})$
- 7. Show that if ξ is any value of

$$-i\log(iz+\sqrt{1-z^2})$$

then $\sin(\xi) = z$. Likewise, show that if ζ is any value of

$$\frac{i}{2}\log\left(\frac{1-iw}{1+iw}\right)$$

then $\tan(\zeta) = w$.

- 8. Logarithms
 - (a) Write $\log(1-i)$ in the form x + iy, where $x, y \in \mathbb{R}$.
 - (b) Write $\text{Log}(\sqrt{3}+i)$ in the form x+iy, where $x, y \in \mathbb{R}$.
 - (c) Determine the domain of analyticity for f(z) = Log(4 + i z).
 - (d) Find all solutions $z \in \mathbb{C}$ to the equation $e^{2z} + e^z + 1 = 0$.
- 9. Find all the values of the given complex power
 - (a) $(-1)^{3i}$
 - (b) $3^{2i/\pi}$
 - (c) $(1+i)^{1-i}$
 - (d) $(1 + \sqrt{3}i)^i$
 - (e) $(-i)^{i}$
 - (f) $(ei)^{\sqrt{2}}$

2 Graduate Problems

1. Prove first that

$$1 + e^{i\theta} + e^{2i\theta} + \ldots + e^{in\theta} = \frac{i}{2} \frac{(1 - e^{i(n+1)\theta}) e^{-i\theta/2}}{\sin(\theta/2)}.$$

Use this result to prove that

$$\frac{1}{2} + \cos(\theta) + \cos(2\theta) + \ldots + \cos(n\theta) = \frac{\sin\left((n+1/2)\theta\right)}{2\sin(\theta/2)}$$

and

$$\sin(\theta) + \sin(2\theta) + \ldots + \sin(n\theta) = \frac{\cos(\theta/2) - \cos((n+1/2)\theta)}{2\sin(\theta/2)}$$