MTH 317/617
 Homework \#5

Due Date: October 20, 2023

1 Problems for Everyone

1. Write the following polynomials in the Taylor form, centered at $z=2$.
(a) $p(z)=z^{5}+3 z+4$
(b) $p(z)=z^{10}$
(c) $p(z)=(z-1)(z-2)^{3}$.
2. If $p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{0}\left(a_{n} \neq 0\right)$, then its reverse polynomial $p^{*}(z)$ is given by

$$
p^{*}(z)=\overline{a_{n}}+\overline{a_{n-1}} z+\ldots+\overline{a_{0}} z^{n} .
$$

(a) Show that $p^{*}(z)=z^{n} \overline{p(1 / \bar{z})}$.
(b) Show that if $p(z)$ has a zero at $z_{0} \neq 0$ then $p^{*}(z)$ has a zero at $1 / \overline{z_{0}}$.
(c) Show that for $|z|=1$, we have $|p(z)|=\left|p^{*}(z)\right|$.
3. Let $f(z)$ be the rational function defined by

$$
f(z)=\frac{2 z+i}{\left(z^{2}+z\right)(1-z)^{2}}
$$

(a) Find all of the poles of this function and their multiplicities.
(b) Find a partial fraction decomposition of this function.
(c) If ζ is a pole of $f(z)$ then the coefficient of $\frac{1}{z-\zeta}$ in the partial fraction decomposition is called the residue of $f(z)$ at ζ and is denoted by $\operatorname{Res}(\zeta)$. Find the residues for all of the poles of this function.
4. Let $f: \mathbb{C} \mapsto \mathbb{C}$ be the complex cosine function $f(z)=\cos (z)$.
(a) Use the Cauchy-Riemann equations to show that $\cos (z)$ is an analytic function and prove that

$$
\frac{d f}{d z}=-\sin (z)
$$

(b) Compute the real and imaginary parts of the function $f\left(z^{2}\right)$.
(c) Show that for $z \in \mathbb{C}, \cosh (z)=\cos (i z)$.
5. Prove that if $y \geq 0$ and $x \in \mathbb{R}$ then

$$
|\cos (x+i y)| \leq e^{y} \text { and }|\sin (x+i y)| \leq e^{y}
$$

6. Prove the following identities for $z \in \mathbb{C}$:
(a) $\cosh ^{2}(z)-\sinh ^{2}(z)=1$
(b) $\cosh (z)=\cos (i z)$
(c) $\sinh (z)=-i \sin (i z)$
(d) $|\cosh (z)|^{2}=\sinh ^{2}(x)+\cos ^{2}(y)$
(e) $|\sinh (z)|^{2}=\sinh ^{2}(x)+\sin ^{2}(y)$
(f) $\overline{\sin (z)}=\sin (\bar{z})$
7. Show that if ξ is any value of

$$
-i \log \left(i z+\sqrt{1-z^{2}}\right)
$$

then $\sin (\xi)=z$. Likewise, show that if ζ is any value of

$$
\frac{i}{2} \log \left(\frac{1-i w}{1+i w}\right)
$$

then $\tan (\zeta)=w$.

8. Logarithms

(a) Write $\log (1-i)$ in the form $x+i y$, where $x, y \in \mathbb{R}$.
(b) Write $\log (\sqrt{3}+i)$ in the form $x+i y$, where $x, y \in \mathbb{R}$.
(c) Determine the domain of analyticity for $f(z)=\log (4+i-z)$.
(d) Find all solutions $z \in \mathbb{C}$ to the equation $e^{2 z}+e^{z}+1=0$.
9. Find all the values of the given complex power
(a) $(-1)^{3 i}$
(b) $3^{2 i / \pi}$
(c) $(1+i)^{1-i}$
(d) $(1+\sqrt{3} i)^{i}$
(e) $(-i)^{i}$
(f) $(e i)^{\sqrt{2}}$

2 Graduate Problems

1. Prove first that

$$
1+e^{i \theta}+e^{2 i \theta}+\ldots+e^{i n \theta}=\frac{i}{2} \frac{\left(1-e^{i(n+1) \theta}\right) e^{-i \theta / 2}}{\sin (\theta / 2)}
$$

Use this result to prove that

$$
\frac{1}{2}+\cos (\theta)+\cos (2 \theta)+\ldots+\cos (n \theta)=\frac{\sin ((n+1 / 2) \theta)}{2 \sin (\theta / 2)}
$$

and

$$
\sin (\theta)+\sin (2 \theta)+\ldots+\sin (n \theta)=\frac{\cos (\theta / 2)-\cos ((n+1 / 2) \theta)}{2 \sin (\theta / 2)}
$$

