## MTH 317/617 Homework #6

Due Date: October 27, 2023

## 1 Problems for Everyone

- 1. For each of the following curves give an admissible parametrization that is consistent with the indicated direction.
  - (a) The line segment from z = 1 + i to z = -2 3i.
  - (b) The circle |z-2i|=4 transversed once in the clockwise direction starting from z=4+2i.
  - (c) The arc of the circle |z| = R lying in the second quadrant, from z = Ri to z = -R.
  - (d) The segment of the parabola  $y = x^2$  from the point (1,1) to the point (3,9).
- 2. Using an admissible parametrization, verify from the arclength integral that
  - (a) The length of the line segment from  $z_1$  to  $z_2$  is  $|z_1 z_2|$ .
  - (b) The length of the circle  $|z z_0| = r$  is  $2\pi r$ .
- 3. In class we showed for  $n \in \mathbb{Z}$  and C a circle of radius r > 0 centered at  $z_0 \in \mathbb{C}$  that

$$\int_C (z-z_0)^n ds = \begin{cases} 0 & n \neq -1 \\ 2\pi i & n = -1 \end{cases}.$$

Utilize this fact to evaluate the following contour integral

$$\int_C \left[ \frac{6}{(z-i)^2} + \frac{2}{z-i} + 1 - 3(z-i)^2 \right] dz,$$

where C is the circle |z - i| = 4 traversed once counterclockwise.

- 4. Let C be the perimeter of the square with vertices at the points z = 0, z = 1, z = 1 + i and z = i traversed once in that order.
  - (a) Show by explicitly parametrizing C and computing the contour integral that  $\int_C z^2 dz = 0$ .
  - (b) Show by explicitly parametrizing C and computing the contour integral that  $\int_C \overline{z}^2 dz \neq 0$ . Why does this result not violate the independence of path theorem?

- 5. Let  $\gamma_1$  be the semicircle from 1 to -1 that passes through i and  $\gamma_2$  the semicircle from 1 to -1 that passes through -i.
  - (a) Compute  $\int_{\gamma_1} z dz$  and  $\int_{\gamma_2} z dz$ . Why are these results equal?
  - (b) Compute  $\int_{\gamma_1} \bar{z} dz$  and  $\int_{\gamma_2} \bar{z} dz$ . Why are these results not equal?
- 6. The contour  $\Gamma$  drawn below starts at  $z=\pi$  and ends at z=i.



Calculate the following integrals

(a) 
$$\int_{\Gamma} (3z^2 - 5z + i) dz$$

(b) 
$$\int_{\Gamma} e^z dz$$

(c) 
$$\int_{\Gamma} \sin^2(z) \cos(z) dz$$

(d) 
$$\int_{\Gamma} e^z \cos(z) dz$$

- 7. Compute the following integrals
  - (a)  $\int_{\gamma} z dz$ , where  $\gamma$  is the semicircle from i to -i which passes through -1.
  - (b)  $\int_{\gamma} e^z dz$ , where  $\gamma$  is the line segment from 0 to  $z_0$ .
  - (c)  $\int_{\gamma} |z|^2 dz$ , where  $\gamma$  is the line segment from 2 to 3+i.
  - (d)  $\int_{\gamma} 1/(4+z)dz$ , where  $\gamma$  is the circle of radius 1 centered at -4, oriented counterclockwise.
  - (e)  $\int_{\gamma} \text{Re}(z)dz$ , where  $\gamma$  is the line segment from 1 to i.
  - (f)  $\int_{\gamma} (z^2 + 3z + 4) dz$  where  $\gamma$  is the circle |z| = 2 oriented counterclockwise.

## 2 Graduate Problems

1. Let  $z = z_1(t)$  be an admissible parametrization of the smooth curve  $\gamma$ . If  $\phi(s)$ ,  $c \le s \le d$  is a differentiable function satisfying  $\phi'(s)$  is continuous, and  $\phi(c) = a, \phi(d) = b$ , then the function  $z_2(s) = z_1(\phi(s))$ ,  $c \le s \le d$  is also an admissible parametrization of  $\gamma$ . Verify that

$$\int_{a}^{b} |z_1'(t)| dt = \int_{c}^{d} |z_2'(s)| ds.$$