MTH 317/617
 Homework \#6

Due Date: October 27, 2023

1 Problems for Everyone

1. For each of the following curves give an admissible parametrization that is consistent with the indicated direction.
(a) The line segment from $z=1+i$ to $z=-2-3 i$.
(b) The circle $|z-2 i|=4$ transversed once in the clockwise direction starting from $z=4+2 i$.
(c) The arc of the circle $|z|=R$ lying in the second quadrant, from $z=R i$ to $z=-R$.
(d) The segment of the parabola $y=x^{2}$ from the point $(1,1)$ to the point $(3,9)$.
2. Using an admissible parametrization, verify from the arclength integral that
(a) The length of the line segment from z_{1} to z_{2} is $\left|z_{1}-z_{2}\right|$.
(b) The length of the circle $\left|z-z_{0}\right|=r$ is $2 \pi r$.
3. In class we showed for $n \in \mathbb{Z}$ and C a circle of radius $r>0$ centered at $z_{0} \in \mathbb{C}$ that

$$
\int_{C}\left(z-z_{0}\right)^{n} d s= \begin{cases}0 & n \neq-1 \\ 2 \pi i & n=-1\end{cases}
$$

Utilize this fact to evaluate the following contour integral

$$
\int_{C}\left[\frac{6}{(z-i)^{2}}+\frac{2}{z-i}+1-3(z-i)^{2}\right] d z
$$

where C is the circle $|z-i|=4$ traversed once counterclockwise.
4. Let C be the perimeter of the square with vertices at the points $z=0, z=1, z=1+i$ and $z=i$ traversed once in that order.
(a) Show by explicitly parametrizing C and computing the contour integral that $\int_{C} z^{2} d z=0$.
(b) Show by explicitly parametrizing C and computing the contour integral that $\int_{C} \bar{z}^{2} d z \neq 0$. Why does this result not violate the independence of path theorem?
5. Let γ_{1} be the semicircle from 1 to -1 that passes through i and γ_{2} the semicircle from 1 to -1 that passes through $-i$.
(a) Compute $\int_{\gamma_{1}} z d z$ and $\int_{\gamma_{2}} z d z$. Why are these results equal?
(b) Compute $\int_{\gamma_{1}} \bar{z} d z$ and $\int_{\gamma_{2}} \bar{z} d z$. Why are these results not equal?
6. The contour Γ drawn below starts at $z=\pi$ and ends at $z=i$.

Calculate the following integrals
(a) $\int_{\Gamma}\left(3 z^{2}-5 z+i\right) d z$
(b) $\int_{\Gamma} e^{z} d z$
(c) $\int_{\Gamma} \sin ^{2}(z) \cos (z) d z$
(d) $\int_{\Gamma} e^{z} \cos (z) d z$
7. Compute the following integrals
(a) $\int_{\gamma} z d z$, where γ is the semicircle from i to $-i$ which passes through -1 .
(b) $\int_{\gamma} e^{z} d z$, where γ is the line segment from 0 to z_{0}.
(c) $\int_{\gamma}|z|^{2} d z$, where γ is the line segment from 2 to $3+i$.
(d) $\int_{\gamma} 1 /(4+z) d z$, where γ is the circle of radius 1 centered at -4 , oriented counterclockwise.
(e) $\int_{\gamma} \operatorname{Re}(z) d z$, where γ is the line segment from 1 to i.
(f) $\int_{\gamma}\left(z^{2}+3 z+4\right) d z$ where γ is the circle $|z|=2$ oriented counterclockwise.

2 Graduate Problems

1. Let $z=z_{1}(t)$ be an admissible parametrization of the smooth curve γ. If $\phi(s), c \leq s \leq d$ is a differentiable function satisfying $\phi^{\prime}(s)$ is continuous, and $\phi(c)=a, \phi(d)=b$, then the function $z_{2}(s)=z_{1}(\phi(s)), c \leq s \leq d$ is also an admissible parametrization of γ. Verify that

$$
\int_{a}^{b}\left|z_{1}^{\prime}(t)\right| d t=\int_{c}^{d}\left|z_{2}^{\prime}(s)\right| d s
$$

