MTH 317/617
 Homework \#9

Due Date: December 1, 2023

1 Problems for Everyone

1. Let f be analytic except at an isolated singularity z_{0} and suppose that the Laurent series for f about z_{0} is given by

$$
f(z)=\sum_{j=-\infty}^{\infty} a_{j}\left(z-z_{0}\right)^{j}
$$

Show that the coefficients a_{j} are given by

$$
a_{j}=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(z)}{\left(z-z_{0}\right)^{j+1}} d z
$$

where Γ is any closed contour containing z_{0}.
2. Prove that if f has a simple pole at z_{0} then

$$
\operatorname{Res}\left(f ; z_{0}\right)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)
$$

3. Let $f(z)=P(z) / Q(z)$, where the functions $P(z)$ and $Q(z)$ are both analytic at z_{0}, and Q has a simple zero at z_{0}, while $P\left(z_{0}\right) \neq 0$. Prove that

$$
\operatorname{Res}\left(f ; z_{0}\right)=\frac{P\left(z_{0}\right)}{Q^{\prime}\left(z_{0}\right)}
$$

4. Prove that if f has a pole of order m at z_{0}, then

$$
\operatorname{Res}\left(f ; z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{1}{(m-1)!} \frac{d^{m-1}}{d z^{m-1}}\left[\left(z-z_{0}\right)^{m} f(z)\right]
$$

5. Suppose that f is analytic and has a zero of order m at the point z_{0}. Show that the function $g(z)=f^{\prime}(z) / f(z)$ has a simple pole at z_{0} with

$$
\operatorname{Res}\left(g ; z_{0}\right)=m
$$

6. Determine all of the isolated singularities of each of the following functions and compute the residue at each singularity.
(a) $f(z)=\frac{e^{3 z}}{z-2}$
(b) $f(z)=\frac{z+1}{z^{2}-3 z+2}$
(c) $f(z)=\frac{1+e^{z}}{z^{2}}+\frac{2}{z}$
(d) $f(z)=\frac{\sin \left(z^{2}\right)}{z^{2}\left(z^{2}+1\right)}$
(e) $f(z)=\frac{1-\cos (z)}{z^{2}}$
(f) $f(z)=\frac{1}{z \sin (z)}$
(g) $f(z)=\sin \left(\frac{1}{3 z}\right)$
7. Evaluate the following contour integrals
(a) $\int_{|z|=1} \frac{z^{2}+3 z-1}{z\left(z^{2}-3\right)} d z$
(b) $\int_{|z|=1} \frac{\sin (z)}{z^{6}} d z$
(c) $\int_{|z|=4} z \tan (z) d z$
(d) $\int_{|z|=1} \frac{e^{z^{2}}}{z^{6}} d z$
(e) $\int_{|z|=1} z^{4}\left(e^{z^{-1}}+z^{2}\right) d z$
(f) $\int_{|z|=1} \cos \left(\frac{1}{z^{2}}\right) e^{z^{-1}} d z$
(g) $\int_{|z|=1} \frac{1}{z^{2}\left(e^{z}-1\right)} d z$
8. Verify each of the following integrals by writing the integral as a contour integral in the complex plane:
(a) $\int_{0}^{2 \pi} \frac{1}{2+\sin (\theta)} d \theta=\frac{2 \pi}{\sqrt{3}}$
(b) $\int_{0}^{2 \pi} \frac{8}{5+2 \cos (\theta)} d \theta=\frac{16 \pi}{\sqrt{21}}$
(c) $\int_{-\pi}^{\pi} \frac{1}{1+\sin ^{2}(\theta)} d \theta=\sqrt{2} \pi$
