MTH 383/683: Homework \#6

Due Date: October 27, 2023

1 Problems for Everyone

1. Conditional Expectation of Continuous Random Variables Let X, Y be two random variables with joint density $f(x, y)$ on \mathbb{R}^{2} and assume $f(x, y)>0$ for all $x, y \in \mathbb{R}$. Show that the conditional expectation $\mathbb{E}[Y \mid X]$ equals $h(X)$ where h is the function

$$
h(x)=\frac{\int_{-\infty}^{\infty} y f(x, y) d y}{\int_{-\infty}^{\infty} f(x, y)} d y
$$

Hint: To prove this you need to show both properties of conditional expectation.
2. Exercises on σ-fields The Borel sets of \mathbb{R}, denoted $\mathcal{B}(\mathbb{R})$, is the smallest σ-algebra on \mathbb{R} containing intervals of the form $(a, b]$. That is, $\mathcal{B}(\mathbb{R})$ contains all possible unions and intersections of intervals of the form $(a, b]$.
(a) Show that all singletons $\{b\}$ are in $\mathcal{B}(\mathbb{R})$ by writing $\{b\}$ as the infinite intersection of intervals of the form $(b-1 / n, b+1 / n]$.
(b) Prove that all open intervals (a, b) and closed intervals $[a, b]$ are in $\mathcal{B}(\mathbb{R})$.
3. Another Look at Conditional Expectation for Gaussians Let (X, Y) be a Gaussian vector with mean 0 and covariance matrix

$$
C=\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right],
$$

where $\rho \in(-1,1)$.
(a) Use Equation (4.5) in the text to show that $\mathbb{E}[Y \mid X]=\rho X$.
(b) Write down the joint PDF $f(x, y)$ of (X, Y).
(c) Show that

$$
\int_{-\infty}^{\infty} y f(x, y) d y=\rho x \text { and } \int_{-\infty}^{\infty} f(x, y) d y=1
$$

(d) Use problem $\# 1$ on this homework to show that $\mathbb{E}[Y \mid X]=\rho X$.
4. Gaussian Conditioning Consider the Gaussian vector (X_{1}, X_{2}, X_{3}) with mean 0 and covariance matrix

$$
C=\left[\begin{array}{lll}
2 & 2 & 0 \\
2 & 4 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(a) Prove that X_{3} is independent of X_{2} and X_{1}.
(b) Compute $\mathbb{E}\left[X_{2} \mid X_{1}\right]$.
(c) Write X_{2} as a linear combination of X_{1} and a random variable independent of X_{1}.
(d) Compute $\mathbb{E}\left[e^{a X_{2}} \mid X_{1}\right]$ for any $a \in \mathbb{R}$.
5. Let B_{t} be a standard Brownian motion. Verify that $M_{t}=B_{t}^{2}-t$ is a martingale for the Brownian filtration.

Homework \# 6
\#1.
Let X, I be two random variables with joint density $f(x, y)$ on \mathbb{R}^{2} and assume $f(x, y)>0$ for all $x, y \in \mathbb{R}$, Show that

$$
\mathbb{E}[\bar{Y} \mid \bar{X}]=h(\bar{X})
$$

Where

$$
h(x)=\frac{\int_{-\infty}^{\infty} y f(x, y) d y}{\int_{-\infty}^{\infty} f(x, y) d y}
$$

Solution!'
Let $g(X)$ be any function. Therefore,

$$
\begin{aligned}
\mathbb{E}[g(X) \mathbb{F}[Y \mid X]] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x)\left(\frac{\int_{-\infty}^{\infty} z f(x, z) d z}{\int_{-\infty}^{\infty} f(x, w) d w}\right) f(x, y) d y d x \\
& =\int_{-\infty}^{\infty} g(x) \frac{\int_{-\infty}^{\infty} z f(x, z) d z}{\int_{-\infty}^{\infty} f(x, w) d w\left(\int_{-\infty}^{\infty} f(x, y) d y\right) d x} \\
& =\int_{-\infty}^{\infty} g(x) \int_{-\infty}^{\infty} z f(x, z) d z \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x) z f(x, z) d z \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x) y f(x, y) d y \\
& =\mathbb{E}[g(\bar{X}) Y]
\end{aligned}
$$

Thus,

$$
\mathbb{E}[I \mid X]=\mathbb{E}[g(X) Y]
$$

\#2.
The Bored sets of \mathbb{R}, denoted $B(\mathbb{R})$ is the smallest σ-aljofora on \mathbb{R} containing intervals of the form $(a, b]$.
(a) Show that singletons $\{b\}$ are in $B(\mathbb{R})$.
(b) Prove that all open intervals (a, b) and closed intervals [a, $)$] are in $\mathscr{B}(\mathbb{R})$.

Solution:
(a) Since $\{b\}=\hat{n}_{n=1}^{\infty}(b-1 / n, b+1 / m]$ it follows that $\{b\} \in Y(\mathbb{R})$.
(b) Since $[a, b]=(a, b] \cup\{a\}$ and $(a, b)=(a, b] \cap\{b\}^{c}$ it follows that $(a, b),[a, b] \in B(\mathbb{R})$.
\#3.
Let (X, Y) be a Gaussian vector with mean 0 and covariance matrix

$$
C=\left[\begin{array}{ll}
1 & \rho \\
5 & 1
\end{array}\right]
$$

where $s \in(-1,1)$.
(a) Show that $\mathbb{E}[Y \mid X]=\rho \mathbb{Z}$.
(b) Write down the joint P.D.F. of (\bar{X}, \mp).
(d) Use problem \# to show that $\mathbb{E}[\mathcal{Z} \mid X]=5 \mathbb{Z}$,

Solution:

$$
\begin{aligned}
& \text { (a) } \mathbb{E}[X \mid X]=\frac{\mathbb{E}[X X]}{\mathbb{E}\left[X^{2}\right]}=\frac{\rho}{1} X=s X \\
& (b) . \\
& e^{-\left(x^{2}-2 s x y+y^{2}\right) / 2\left(1-s^{2}\right)}
\end{aligned}
$$

(c) Computings we have that

$$
\begin{aligned}
& \int_{-\infty}^{\infty} y f(x, y) d y=\frac{1}{\left.2 \pi \sqrt{1-s^{2}} \int_{-\infty}^{\infty} e^{-\left(x^{2}-25 x y\right.}+y^{2}\right) / 1-s^{2}} d y \\
& =\frac{1}{2 \pi \sqrt{1-\rho^{2}}} \int_{-\infty}^{\infty} y e^{-x^{2} / 1-s^{2}} e^{-\left(y^{2}-2 s x y+s^{2} x^{2}\right) / 1-s^{2} e^{J^{2} x y} 1-s^{2} d y} \\
& =\frac{e^{-\left(1-\rho^{2}\right) x^{2}}}{2 \pi \sqrt{1-\rho^{2}}} \int_{-\infty}^{\infty} e^{-(y-\rho x)^{2} / 1-s^{2}} d y \\
& =\frac{e^{-\left(1-s^{2}\right) x^{2}}}{\sqrt{2 \pi}} \rho x . \\
& \int_{-\infty}^{\infty} f(x, y) d y=\frac{1}{2 \pi \sqrt{1-s^{2}}} \int_{-\infty}^{\infty} e^{-\left(1-s^{2}\right) x^{2}} e^{-(y-\delta x)^{2} / 1-s^{2}} d y \\
& =\frac{1}{\sqrt{2 \pi}} e^{-\left(1-\delta^{2}\right) x^{2}}
\end{aligned}
$$

(d) From problen \#l we liaie that

$$
\mathbb{E}[\bar{Y}]=h(X)
$$

where

$$
\begin{aligned}
h(x) & =\frac{\int_{-\infty}^{\infty} y f(x, y) d y}{\int_{-\infty}^{\infty} f(x, y) d y} \\
& =s x_{1}
\end{aligned}
$$

Therefore,

$$
\mathbb{E}[\Psi \mid X]=s X
$$

\#4.
Consider the Gaussian vector $\left(X_{1}, X_{z}, X_{1}\right)$ with mean 0 and covariance matrix

$$
C=\left[\begin{array}{ccc}
2 & 2 & 0 \\
-2 & 4 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

(a) Prow that X_{3} in independent of X_{2} and X_{1}
(b) Compute $\left[\pm\left[X_{2} \mid X_{1}\right]\right.$
(c) Write X_{2} as a linear combination of X_{1} and a random variable independent of X_{1}.
(d) Compute $\mathbb{E}\left[e^{a X_{2}} \mid X_{1}\right]$ for any $a \in \mathbb{R}$.

Solution:
(a) Since $\operatorname{Cov}\left(\mathbb{X}_{,}, \underline{X}_{2}\right)=\operatorname{Cov}\left(\mathbb{X}_{3}, \mathbb{Z}_{1}\right) \equiv 0$ it follows that X_{3} is independent of X_{1} and X_{2}.
(b). $\mathbb{E}[X \mid X]=,\frac{\mathbb{E}\left[X_{1} X_{1}\right]}{\mathbb{E}\left[X_{1}^{2}\right]}=\frac{2}{2} X_{1}=X_{1}$
(c) Using the orthogonal decomposition we have that

$$
\begin{aligned}
X_{2} & =\left(X_{2}-\mathbb{E}\left[X_{2} \mid X_{1}\right]\right)+\mathbb{E}\left[X_{2} \mid X_{1}\right] \\
& =\left(X_{2}-X_{1}\right)+X_{1}
\end{aligned}
$$

(d).

$$
\begin{aligned}
\mathbb{E}\left[e^{a X_{2}} \mid X_{1}\right] & =\mathbb{E}\left[e^{a\left(X_{2}-X_{1}\right)} e^{\left.a X_{1} \mid X_{1}\right]}\right. \\
& =e^{a X_{1}} \mathbb{E}\left[e^{\left.a\left(X_{2}-X_{1}\right) \mid X_{3}\right]}\right. \\
& =e^{a X_{1} \mathbb{E}}\left[e^{a\left(X_{2}-X_{1}\right)}\right]
\end{aligned}
$$

Now, $\mathbb{X}_{2}-\mathbb{X}_{1}$ is Gaussian with mean 0 and Variance.

$$
\begin{aligned}
\dot{\sigma}^{2} & =\mathbb{E}\left[\left(X_{2}-X_{1}\right)^{2}\right] \\
& =\mathbb{E}\left[X_{2}^{2}\right]-2 \mathbb{E}\left[X_{2} X_{1}\right]+\mathbb{E}\left[X_{1}^{2}\right] \\
& =4-4+2 \\
& =2
\end{aligned}
$$

Therefore, $\mathbb{E}\left[e^{a \mathbb{I}_{-}} \mid X_{1}\right]=e^{a X_{1}} e^{a^{2} r^{2} / 2}=e^{a \Sigma_{1}+a^{2}}$.
\#5
Let B_{x} be a standard Brownian motion. Verify that $M_{t}=B_{x}^{2}-t$ is a martingale for the Brownian filtration

Solution':

$$
\begin{aligned}
\mathbb{E}\left[M_{A} \mid \sigma\left(B_{s}\right)\right]= & \mathbb{E}\left[B_{t}^{2}-A \mid \sigma\left(B_{s}\right)\right] \\
= & \mathbb{E}\left[\left(B_{t}-B_{s}+B_{s}\right)^{2} \mid \sigma\left(B_{s}\right)\right]-t \\
= & \mathbb{E}\left[\left(B_{t}-B_{s}\right)^{2}+2\left(B_{t}-B_{s}\right) B_{s}+B_{s}^{2} \mid \sigma\left(B_{s}\right)\right]-t \\
= & \mathbb{E}\left[\left(B_{t}-B_{s}\right)^{2} \mid \sigma\left(B_{s}\right)\right]+2 \mathbb{E}\left[\left(B_{t}-B_{s}\right) B_{s} \mid \sigma\left(B_{s}\right)\right] \\
& +\mathbb{E}\left[B_{s}^{2} \mid \sigma\left(B_{s}\right)\right]-t \\
= & \mathbb{E}\left[\left(B_{t}-B_{s}\right)^{2}\right]+B_{s} \mathbb{E}\left[B_{t}-B_{s}\right]+B_{s}^{2}-t \\
= & t-s+0+B_{s}^{2}-t \\
= & B_{s}^{2}-s .
\end{aligned}
$$

