MTH 383/683: Homework #1

Due Date: September 08, 2023

1 Problems for Everyone

- 1. Basic properties of probability. Let P be a probability on Ω . Use the basic properties of probability to prove the following
 - (a) Finite Additivity: If A, B are disjoint events then $P(A \cup B) = P(A) + P(B)$.
 - (b) For any event A, $P(A^c) = 1 P(A)$.
 - (c) For any events $A, B, P(A \cup B) = P(A) + P(B) P(A \cap B)$.
 - (d) Monotinicity: If $A \subset B$, $P(A) \leq P(B)$.
- 2. Distribution as a probability on \mathbb{R} . Let ρ_X be the distribution of a random variable X on some probability space (Ω, \mathcal{F}, P) . Show that ρ_X has the properties of a probability distribution on \mathbb{R} .
- 3. Distribution of an indicator function. Let (Ω, \mathcal{F}, P) be a probability space and A and event in \mathcal{F} with 0 < P(A) < 1. What is the distribution of the random variable $\mathbb{1}_A$?
- 4. Constructing a random variable from another one. Let X be a random variable on (Ω, \mathcal{F}, P) that is uniformly distributed on [-1, 1]. Consider $Y = X^2$.
 - (a) Find the CDF of Y and plot its graph.
 - (b) Find the PDF of Y and plot its graph.
- 5. Memory loss property. Let Y be an exponential random variable with parameter $\lambda > 0$. Show that for any s, t > 0

$$P(Y > t + s | Y > s) = P(Y > t).$$

Recall that the conditional probability of A given the event B is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

6. Independence Recall that two events A and B in some probability space (Ω, \mathcal{F}, P) are independent if

$$P(A \cap B) = P(A)P(B).$$

Consequently, if A and B are independent it follows that P(A|B) = P(A) as expected.

- (a) Prove that if A and B are independent than A^c and B are also independent.
- (b) Prove that if A and B are independent then A^c and B^c are also independent.
- (c) Prove that if A and B are independent then $P(A \cup B) = 1 (1 P(A))(1 P(B))$.

2 Graduate Problems (undergraduates can complete for extra credit but your homework score cannot go above 10 points)

- 1. Suppose A_1, A_2, \ldots are events in a probability space (Ω, \mathcal{F}, P) .
 - (a) Prove that

$$\bigcap_{n=1}^{\infty}\bigcup_{m=n}^{\infty}A_m = \{\omega \in \Omega : \omega \text{ belongs to infinitely many } A_n\}.$$

The event $\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m$ is called " A_n infinitely often" and is abbreviated " A_n i.o.". (b) Prove that if $\sum_{n=1}^{\infty} P(A_n) < \infty$ then

$$P(A_n \text{ i.o.}) = 0.$$

(c) A_1, A_2, \ldots are called mutually independent if every A_i is independent of any intersection of the other A_j for $j \neq i$, that is, for every finite subsequence A_{j_k} of events

$$P\left(\bigcap_{k} A_{j_k}\right) = \prod_{k} P(A_{j_k}).$$

Prove that if A_1, A_2, \ldots are mutually independent events then

$$P\left(\bigcup_{k=n}^{\infty} A_k\right) = 1 - \prod_{k=n}^{\infty} \left(1 - P(A_k)\right).$$

(d) Prove that for all $x \in \mathbb{R}$, $1-x \leq e^{-x}$ and use this to prove that for mutually independent events A_1, A_2, \ldots it follows that

$$P\left(\bigcup_{k=n}^{\infty} A_k\right) \ge 1 - \prod_{k=n}^{\infty} e^{-P(A_k)} = 1 - e^{\sum_{k=n}^{\infty} A_k}.$$

(e) If A_1, A_2, \ldots are mutually independent events, prove that if $\sum_{n=1}^{\infty} P(A_n) = \infty$ then

$$P(A_n \text{ i.o.}) = 1.$$

(f) Suppose that the events A_1, A_2, \ldots are mutually independent with

$$P\left(\bigcup_{n} A_{n}\right) = 1 \text{ and } P(A_{n}) < 1$$

for each n. Prove that $P(A_n \text{ i.o.}) = 1$.

2. Let Ω be any set and \mathcal{A} any collection of subsets of Ω . Show that there exists a unique smallest σ -algebra \mathcal{F} of subsets of Ω containing \mathcal{A} . We call \mathcal{F} the σ -algebra generated by \mathcal{A} . Hint: Consider the intersection of all σ -algebras containing \mathcal{A} .