MTH 383/683: Homework \#1

Due Date: September 08, 2023

1 Problems for Everyone

1. Basic properties of probability. Let P be a probability on Ω. Use the basic properties of probability to prove the following
(a) Finite Additivity: If A, B are disjoint events then $P(A \cup B)=P(A)+P(B)$.
(b) For any event $A, P\left(A^{c}\right)=1-P(A)$.
(c) For any events $A, B, P(A \cup B)=P(A)+P(B)-P(A \cap B)$.
(d) Monotinicity: If $A \subset B, P(A) \leq P(B)$.
2. Distribution as a probability on \mathbb{R}. Let ρ_{X} be the distribution of a random variable X on some probability space (Ω, \mathcal{F}, P). Show that ρ_{X} has the properties of a probability distribution on \mathbb{R}.
3. Distribution of an indicator function. Let (Ω, \mathcal{F}, P) be a probability space and A and event in \mathcal{F} with $0<P(A)<1$. What is the distribution of the random variable $\mathbb{1}_{A}$?
4. Constructing a random variable from another one. Let X be a random variable on (Ω, \mathcal{F}, P) that is uniformly distributed on $[-1,1]$. Consider $Y=X^{2}$.
(a) Find the CDF of Y and plot its graph.
(b) Find the PDF of Y and plot its graph.
5. Memory loss property. Let Y be an exponential random variable with parameter $\lambda>0$. Show that for any $s, t>0$

$$
P(Y>t+s \mid Y>s)=P(Y>t) .
$$

Recall that the conditional probability of A given the event B is

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} .
$$

6. Independence Recall that two events A and B in some probability space (Ω, \mathcal{F}, P) are independent if

$$
P(A \cap B)=P(A) P(B) .
$$

Consequently, if A and B are independent it follows that $P(A \mid B)=P(A)$ as expected.
(a) Prove that if A and B are independent than A^{c} and B are also independent.
(b) Prove that if A and B are independent then A^{c} and B^{c} are also independent.
(c) Prove that if A and B are independent then $P(A \cup B)=1-(1-P(A))(1-P(B))$.

2 Graduate Problems (undergraduates can complete for extra credit but your homework score cannot go above 10 points)

1. Suppose A_{1}, A_{2}, \ldots are events in a probability space (Ω, \mathcal{F}, P).
(a) Prove that

$$
\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_{m}=\left\{\omega \in \Omega: \omega \text { belongs to infinitely many } A_{n}\right\} .
$$

The event $\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_{m}$ is called " A_{n} infinitely often" and is abbreviated " A_{n} i.o.".
(b) Prove that if $\sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty$ then

$$
P\left(A_{n} \text { i.o. }\right)=0 .
$$

(c) A_{1}, A_{2}, \ldots are called mutually independent if every A_{i} is independent of any intersection of the other A_{j} for $j \neq i$, that is, for every finite subsequence $A_{j_{k}}$ of events

$$
P\left(\bigcap_{k} A_{j_{k}}\right)=\prod_{k} P\left(A_{j_{k}}\right)
$$

Prove that if A_{1}, A_{2}, \ldots are mutually independent events then

$$
P\left(\bigcup_{k=n}^{\infty} A_{k}\right)=1-\prod_{k=n}^{\infty}\left(1-P\left(A_{k}\right)\right)
$$

(d) Prove that for all $x \in \mathbb{R}, 1-x \leq e^{-x}$ and use this to prove that for mutually independent events A_{1}, A_{2}, \ldots it follows that

$$
P\left(\bigcup_{k=n}^{\infty} A_{k}\right) \geq 1-\prod_{k=n}^{\infty} e^{-P\left(A_{k}\right)}=1-e^{\sum_{k=n}^{\infty} A_{k}}
$$

(e) If A_{1}, A_{2}, \ldots are mutually independent events, prove that if $\sum_{n=1}^{\infty} P\left(A_{n}\right)=\infty$ then

$$
P\left(A_{n} \text { i.o. }\right)=1
$$

(f) Suppose that the events A_{1}, A_{2}, \ldots are mutually independent with

$$
P\left(\bigcup_{n} A_{n}\right)=1 \text { and } P\left(A_{n}\right)<1
$$

for each n. Prove that $P\left(A_{n}\right.$ i.o. $)=1$.
2. Let Ω be any set and \mathcal{A} any collection of subsets of Ω. Show that there exists a unique smallest σ-algebra \mathcal{F} of subsets of Ω containing \mathcal{A}. We call \mathcal{F} the σ-algebra generated by \mathcal{A}. Hint: Consider the intersection of all σ-algebras containing \mathcal{A}.

