MTH 383/683: Homework \#3

Due Date: September 22, 2023

1 Problems for Everyone

1. Sum of Exponential is Gamma. Let X_{1}, \ldots, X_{n} be n independent and identically distributed exponential random variables with parameter $\lambda>0$ and let $Z=X_{1}+\ldots+X_{n}$. Recall from the last homework that the moment generating function of each X_{i} is given by

$$
\phi(t)=\mathbb{E}\left[e^{t X_{i}}\right]=\frac{\lambda}{\lambda-t},
$$

for $t<\lambda$.
(a) Find the moment generating function of Z.
(b) A random variable Y is said to have a gamma distribution with parameter $\lambda>0$ if it has the following probability density

$$
f(y)=\left\{\begin{array}{ll}
\frac{\lambda^{n}}{(n-1)!} y^{n-1} e^{-\lambda y}, & y \geq 0 \\
0, & y<0
\end{array},\right.
$$

where $n \in \mathbb{N}$. Find the moment generating function Y and use this result to prove that the sum of n independent and identically distributed exponential random variables is a gamma distribution.
2. Sum of Gaussian is Gaussian Let X_{1}, X_{2} be two independent but not necessarily identically distributed Gaussian random variables. Recall from last homework that the moment generating function of a Gaussian random variable with mean μ and standard deviation σ is given by

$$
\phi(t)=\mathbb{E}\left[e^{t X}\right]=e^{t \mu+t^{2} \sigma^{2} / 2} .
$$

By computing its moment generating function, prove that $Z=X_{1}+X_{2}$ is also a Gaussian random variable.
3. Calculations with Joint Density Let $\vec{X}=(X, Y)$ be a random vector with joint density

$$
f(x, y)=\left\{\begin{array}{ll}
6 x^{2} y & 0 \leq x \leq y \text { and } x+y \leq 2 \\
0 & \text { elsewhere }
\end{array} .\right.
$$

(a) Find the probability density functions of X and Y.
(b) Are X and Y independent random variables?
4. Example of Uncorrelated Random Variables that are not Independent Let X be a standard Gaussian. Show that $\operatorname{Cov}\left(X, X^{2}\right)=0$, yet X and X^{2} are not independent.
5. The Covariance Matrix of a Random Vector is Always Positive Definite. Let C be the covariance matrix of the random vector $X=\left(X_{1}, \ldots X_{n}\right)$. Show that C is always positive semidefinite, i.e.,

$$
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i} a_{j} C_{i j} \geq 0
$$

for any $a_{1}, \ldots a_{n} \in \mathbb{R}^{n}$. Hint: Write the left side as the variance of some random variable.
6. A Linear Transformation of a Gaussian Vector is also Gaussian. Let $X=\left(X_{1}, \ldots X_{n}\right)$ be an n-dimensional Gaussian vector and M a $m \times n$ matrix.
(a) Show that $Y=M X$ is also a Gaussian vector.
(b) If the covariance matrix of X is C, write the covariance matrix of Y in terms of M and C.

