MTH 383/683: Homework \#5

Due Date: October 20, 2023

1 Problems for Everyone

1. Triangle Inequality Let X, Y be two random variables in $L^{2}(\Omega, \mathcal{F}, P)$. Prove the triangle inequality

$$
\|X+Y\| \leq\|X\|+\|Y\|
$$

Hint: Write out the norms as expectations, expand, and use the Cauchy-Schwarz inequality.
Use this result to prove the more general inequality: for $X_{1}, \ldots X_{n} \in L^{2}(\Omega, \mathcal{F}, P)$ we have

$$
\left\|X_{1}+\ldots X_{n}\right\| \leq \sum_{j=1}^{n}\left\|X_{i}\right\|
$$

2. Integrable Random Variables Recall that $L^{1}(\Omega, \mathcal{F}, P)$ is the set of all random variables for which $\mathbb{E}[|X|]<\infty$.
(a) Prove that $L^{1}(\Omega, \mathcal{F}, P)$ is a linear subspace of the vector space of random variables.
(b) Verify that $\|X\|_{1}=\mathbb{E}[|X|]$ is a norm for L^{1}. That is prove the following
i. For all $a \in \mathbb{R}$ and $X \in L^{1}$ that $\|a X\|_{1}=|a|\|X\|_{L^{1}}$.
ii. For all $X \in L^{1},\|X\|_{L^{1}}=0$ if and only if $X=0$.
iii. For all $X, Y \in L^{1},\|X+Y\| \leq\|X\|+\|Y\|$.
3. Brownian Moments Let B_{t} be standard Brownian motion. Compute the following moments:
(a) $\mathbb{E}\left[B_{t}^{6}\right]$
(b) $\mathbb{E}\left[\left(B_{t_{2}}-B_{t_{1}}\right)\left(B_{t_{3}}-B_{t_{2}}\right)\right]$ if $t_{1}<t_{2}<t_{3}$.
(c) $\mathbb{E}\left[B_{s}^{2} B_{t}^{2}\right]$ if $s<t$
(d) $\mathbb{E}\left[B_{s} B_{t}^{3}\right]$ if $s<t$
(e) $\mathbb{E}\left[B_{s}^{100} B_{t}^{101}\right]$
4. Brownian Probabilities Let B_{t} be a standard Brownian motion. Write the following probabilities as an integral.
(a) $P\left(B_{1}>1, B_{2}>1\right)$
(b) $P\left(B_{1}>1, B_{2}>1, B_{3}>1\right)$
5. Time Inversion Let B_{t} be a standard Brownian motion and $X_{t}=t B_{1 / t}$ for $t>0$.
(a) Show that X_{t} has the distribution of a Brownian motion on $t>0$.
(b) Prove that X_{t} converges to 0 as $t \rightarrow 0$ in the sense of L^{2} convergence.
(c) Prove the following law of large numbers for Brownian motion

$$
\lim _{t \rightarrow \infty} \frac{X_{t}}{t}=0
$$

