MTH 383/683: Homework #5

Due Date: October 20, 2023

1 Problems for Everyone

1. Triangle Inequality Let X, Y be two random variables in $L^2(\Omega, \mathcal{F}, P)$. Prove the triangle inequality

 $||X + Y|| \le ||X|| + ||Y||.$

Hint: Write out the norms as expectations, expand, and use the Cauchy-Schwarz inequality. Use this result to prove the more general inequality: for $X_1, \ldots, X_n \in L^2(\Omega, \mathcal{F}, P)$ we have

$$||X_1 + \dots X_n|| \le \sum_{j=1}^n ||X_i||.$$

- 2. Integrable Random Variables Recall that $L^1(\Omega, \mathcal{F}, P)$ is the set of all random variables for which $\mathbb{E}[|X|] < \infty$.
 - (a) Prove that $L^1(\Omega, \mathcal{F}, P)$ is a linear subspace of the vector space of random variables.
 - (b) Verify that $||X||_1 = \mathbb{E}[|X|]$ is a norm for L^1 . That is prove the following
 - i. For all $a \in \mathbb{R}$ and $X \in L^1$ that $||aX||_1 = |a|||X||_{L^1}$.
 - ii. For all $X \in L^1$, $||X||_{L^1} = 0$ if and only if X = 0.
 - iii. For all $X, Y \in L^1$, $||X + Y|| \le ||X|| + ||Y||$.
- 3. Brownian Moments Let B_t be standard Brownian motion. Compute the following moments:
 - (a) $\mathbb{E}[B_t^6]$
 - (b) $\mathbb{E}[(B_{t_2} B_{t_1})(B_{t_3} B_{t_2})]$ if $t_1 < t_2 < t_3$.
 - (c) $\mathbb{E}[B_s^2 B_t^2]$ if s < t
 - (d) $\mathbb{E}[B_s B_t^3]$ if s < t
 - (e) $\mathbb{E}[B_s^{100}B_t^{101}]$
- 4. Brownian Probabilities Let B_t be a standard Brownian motion. Write the following probabilities as an integral.
 - (a) $P(B_1 > 1, B_2 > 1)$
 - (b) $P(B_1 > 1, B_2 > 1, B_3 > 1)$

5. Time Inversion Let B_t be a standard Brownian motion and $X_t = tB_{1/t}$ for t > 0.

- (a) Show that X_t has the distribution of a Brownian motion on t > 0.
- (b) Prove that X_t converges to 0 as $t \to 0$ in the sense of L^2 convergence.
- (c) Prove the following law of large numbers for Brownian motion

$$\lim_{t \to \infty} \frac{X_t}{t} = 0$$