MTH 383/683: Homework #6

Due Date: October 27, 2023

1 Problems for Everyone

1. Conditional Expectation of Continuous Random Variables Let X, Y be two random variables with joint density f(x, y) on \mathbb{R}^2 and assume f(x, y) > 0 for all $x, y \in \mathbb{R}$. Show that the conditional expectation $\mathbb{E}[Y|X]$ equals h(X) where h is the function

$$h(x) = \frac{\int_{-\infty}^{\infty} y f(x, y) dy}{\int_{-\infty}^{\infty} f(x, y)} dy.$$

Hint: To prove this you need to show both properties of conditional expectation.

- 2. Exercises on σ -fields The Borel sets of \mathbb{R} , denoted $\mathcal{B}(\mathbb{R})$, is the smallest σ -algebra on \mathbb{R} containing intervals of the form (a, b]. That is, $\mathcal{B}(\mathbb{R})$ contains all possible unions and intersections of intervals of the form (a, b].
 - (a) Show that all singletons $\{b\}$ are in $\mathcal{B}(\mathbb{R})$ by writing $\{b\}$ as the infinite intersection of intervals of the form (b-1/n, b+1/n].
 - (b) Prove that all open intervals (a, b) and closed intervals [a, b] are in $\mathcal{B}(\mathbb{R})$.
- 3. Another Look at Conditional Expectation for Gaussians Let (X, Y) be a Gaussian vector with mean 0 and covariance matrix

$$C = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix},$$

where $\rho \in (-1, 1)$.

- (a) Use Equation (4.5) in the text to show that $\mathbb{E}[Y|X] = \rho X$.
- (b) Write down the joint PDF f(x, y) of (X, Y).
- (c) Show that

$$\int_{-\infty}^{\infty} yf(x,y)dy = \rho x \text{ and } \int_{-\infty}^{\infty} f(x,y)dy = 1.$$

(d) Use problem #1 on this homework to show that $\mathbb{E}[Y|X] = \rho X$.

4. Gaussian Conditioning Consider the Gaussian vector (X_1, X_2, X_3) with mean 0 and covariance matrix

$$C = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

- (a) Prove that X_3 is independent of X_2 and X_1 .
- (b) Compute $\mathbb{E}[X_2|X_1]$.
- (c) Write X_2 as a linear combination of X_1 and a random variable independent of X_1 .
- (d) Compute $\mathbb{E}[e^{aX_2}|X_1]$ for any $a \in \mathbb{R}$.
- 5. Let B_t be a standard Brownian motion. Verify that $M_t = B_t^2 t$ is a martingale for the Brownian filtration.