MST 205
Name (Print):

Spring 2022
Exam \#1
02/09/22

The following rules apply:

- If you use a "fundamental theorem" you must indicate this and explain why the theorem may be applied.
- Organize your work, in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive very little credit.
- Short answer questions: Questions labeled as "Short Answer" can be answered by simply writing an equation or a sentence or appropriately drawing a figure. No calculations are necessary or expected for these problems.
- Unless the question is specified as short answer, mysterious or unsupported answers might not receive full credit. An incorrect answer supported by substantially correct calcucations and explanations might still receive partial credit.

Problem	Points	Score
1	15	
2	15	
3	15	
4	15	
5	20	
6	5	
7	5	
8	10	
Total:	100	

Do not write in the table to the right.

1. (15 points) (Short Answer) Determine if the following statement is correct (C) or incorrect (I). Just circle \mathbf{C} or I. No need to show any work. In order for a statement to be correct it must be true in all cases.

C I If A and B are $n \times n$ matrices then $(A B)^{2}=A^{2} B^{2}$.
C (I) If A is an $n \times n$ matrix satisfying $\operatorname{det}(A)=0$ then the equation $A \vec{x}=0$ has no solutions.
(C) If A is an $n \times n$ matrix then $\operatorname{det}\left(A^{2}\right)=\operatorname{det}(A)^{2}$.

Rubric-
C. (I) If A is an $n \times n$ matrix satisfying $A^{2}=0$ then $A=0$. C. If A is an $n \times n$ matrix satisfying $A^{2}=I$ then $A=I$.
2. (15 points) Find all possible solutions to the following system of linear equations or state that are no solutions.

$$
\begin{aligned}
& x+y+2 z=9, \\
& 2 x+4 y-4 z=2, \\
& 3 x+6 y-6 z=3 \text {. } \\
& \text { Rubric } \\
& \text { 絃 } 16 \text { points now rectration }
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc:c}
1 & 1 & 2: 9 \\
0 & 1 & -4 & -8 \\
0 & 1 & -4 & -8
\end{array}\right] \Rightarrow\left[\begin{array}{ccc:c}
1 & 1 & 2 & 9 \\
0 & 1 & -4 & -8 \\
0 & 0 & 0 & 0
\end{array}\right] \begin{array}{l}
*-5 \text { points dor more min } \\
\text { mistakes }(50 \%) \\
*-10 \text { points } \\
\text { onderstadiy. }(0 \%)
\end{array}} \\
& z=\text { anything } \quad \Rightarrow z=\text { anything } \\
& y=-8+4 z \quad y=-8+4 z \\
& x=9-2 z-y \quad z=17-6 z \\
& \text { +22 } 50 \text { :nyc m:niman fry } \\
& \text { cost sctriy up mams. } \\
& \text { * } 5 \text { points solvoim intropresion } \\
& \text { *Based off row ruductim } \\
& \text { *No portal credit fir } \\
& \text { rory inderpertation. } \\
& \begin{array}{l}
\text { * } 1 \text { I print for minor } \\
\text { mistorec solving for } \\
x, y \text {. }
\end{array}
\end{aligned}
$$

3. (15 points) Let

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
0 & 1
\end{array}\right], \quad B=\left[\begin{array}{ll}
4 & 3 \\
2 & 1
\end{array}\right], \quad C=\left[\begin{array}{ll}
1 & 0 \\
2 & 3
\end{array}\right]
$$

Compute the following or state that the computation is impossible.
(a) (5 points) $-3(C-2 B)$

$$
-3(C-2 B)=-3\left(\left[\begin{array}{ll}
1 & 0 \\
2 & 3
\end{array}\right]-\left[\begin{array}{ll}
8 & 6 \\
4 & 2
\end{array}\right]\right)=-3\left(\left[\begin{array}{cc}
-7 & -6 \\
-2 & 1
\end{array}\right]\right)=\left[\begin{array}{cc}
21 & 18 \\
6 & -3
\end{array}\right]
$$

Robric
Each part
*-t poin\& for swall misake $($?
*-3 poiass for tys or miri smot mistres but shows
(b) (5 points) $A B$

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right]=\left[\begin{array}{cc}
8 & 5 \\
20 & 13 \\
2 & 1
\end{array}\right]
$$ undrrstusding (40%)

*-5 No underseredirg.
Wり
No partsal cocdit for C.
(c) (5 points) $B A$.
Not possible.
4. (15 points) Find the inverse of the following matrix or state why it is not invertible.

Therefore,

$$
A^{-1}=\left[\begin{array}{ccc}
0 & 1 & -1 \\
0 & 0 & 1 \\
1 & -1 & 1
\end{array}\right]
$$

Rubric

$$
\begin{aligned}
& *-1 \quad \text { small mistake } \\
& *-3
\end{aligned}
$$

$$
\text { * }-3 \text { two small mistakes }
$$

$$
\text { * }-5 \text { three or soil mistakes }
$$

$$
\left\{\begin{array}{l}
\text { correct } \\
\text { setup. }
\end{array}\right.
$$

*-15 No understardiy

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 0
\end{array}\right] . \\
& {\left[\begin{array}{lll:lll}
1 & 0 & 1: & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]-R 1 \Rightarrow\left[\begin{array}{ccccccc}
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & -1: & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right]-R_{2}\left[\begin{array}{ccc:ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & -1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & -R 3 \\
0 & & 1 & 1 & 1
\end{array}\right]^{-R 3}} \\
& {\left[\begin{array}{ccc:ccc}
1 & 0 & 6 & 0 & 1 & -1 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & -1 & 1
\end{array}\right]}
\end{aligned}
$$

5. (20 points) Calculate the determinants of the following matrices where a, b, c, d, e, f are constands.
(a) (5 points) $A=\left[\begin{array}{ccc}-3 & 0 & 7 \\ 2 & 5 & 0 \\ -1 & 0 & 5\end{array}\right]$

$$
\operatorname{dct}(A)=S d c t\left(\left[\begin{array}{ll}
-3 & 7 \\
-1 & 5
\end{array}\right]\right)=5(-15+2)=-40
$$

(b) (5 points) $B=\left[\begin{array}{lll}1 & a & a^{2} \\ 1 & a & a^{2} \\ 1 & a & a^{2}\end{array}\right]$

$$
\operatorname{det}(B)=0 \quad \begin{aligned}
& \text { since colvms are linearly } \\
& \text { dependent. }
\end{aligned}
$$

(c) (5 points) $C=\left[\begin{array}{ccc}1 & \sqrt{2} & \pi \\ 0 & 2 & 5 \\ 0 & 0 & 3\end{array}\right]$

Rubric

- 1 small mistake 1

$$
\operatorname{det}(C)=6
$$

- 2 twi or more small mistakes
- 5 No understardizy.
(d) (5 points) $D=\left[\begin{array}{llll}0 & a & 0 & 0 \\ b & 0 & c & 0 \\ 0 & d & 0 & e \\ 0 & 0 & f & 0\end{array}\right]$.

$$
\begin{aligned}
\operatorname{det}(D) & =-a \operatorname{det}\left(\left[\begin{array}{ccc}
b & c & 0 \\
0 & 0 & e \\
0 & f & 0
\end{array}\right]\right) \\
& =-a \cdot(e) \operatorname{det}\left(\left[\begin{array}{ll}
b & c \\
0 & f
\end{array}\right]\right. \\
& =a e b f .
\end{aligned}
$$

6. (5 points) Short Answer: Suppose A in an $n \times n$ matrix. Write down the fundamental definition of what it means for an $n \times n$ matrix B to be an inverse of A.

$$
\begin{gathered}
B A=I \\
A B=I
\end{gathered}\left\{\begin{array}{c}
-1 \text { point if they only have one eqorotima } \\
\text { \#there are lots of answers thur staplers } \\
\text { might provide. No partial credit if complearly } \\
\text { wrong. }
\end{array}\right.
$$

7. (5 points) Suppose A and B are $n \times n$ invertible matrices. Show that

$$
\begin{array}{ll}
(A B)^{-1}=B^{-1} A^{-1} & \text { *We will set } \\
B^{-1} A^{-1} \cdot A B=B^{-1} P \cdot B=B^{-1} \cdot B=I & \text { When we get } \\
\text { here.. }
\end{array}
$$

8. (10 points) For what values of a does the following system of equations have zero, one, or infinitely many solutions?

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =4, \\
x_{3} & =2, \\
\left(a^{2}-4\right) x_{3} & =a-2 .
\end{aligned}
$$

$$
\begin{aligned}
& x_{3}=2 \\
\Rightarrow & \left(a^{2}-4\right) 2=a-2
\end{aligned}
$$

If $a=2$ we git

$$
\begin{aligned}
& x_{1}+x_{2}+2=4 \\
& \Rightarrow x_{1}=2-x_{2} \text {, ic. infinity number of solutions. }
\end{aligned}
$$

Otherwise we must have

$$
\begin{aligned}
& 2(a-2)(a+2)=a-2 \\
& \Rightarrow 2 a+4=1 \\
& \Rightarrow a=-3 / 2 .
\end{aligned}
$$

If $a=2$ or $a=-3 / 2$ we have infinite number of soluritus otherwise we have none.

