MST 205
Spring 2022

Exam \#3
04/15/22

The following rules apply:

- If you use a "fundamental theorem" you must indicate this and explain why the theorem may be applied.
- Organize your work, in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive very little credit.
- Short answer questions: Questions labeled as "Short Answer" can be auswered by simply writing an equation or a sentence or appropriately drawing a figure. No calculations are necessary or expected for these problems.
- Unless the question is specified as short answer, mysterious or unsupported answers might not receive full credit. An incorrect

Problem	Points	Score
1	20	
2	15	
3	20	
4	20	
5	15	
6	10	
Total:	100	

Do not write in the table to the right.

1. (20 points) Consider the following differential equation:

$$
\frac{d y}{d x}+3 x^{2} y^{2}=0
$$

(a) (5 points) Short Answer: For this differential equation, check all boxes that apply.

(b) (5 points) Show that $y=0$ is a solution to this equation.

$$
\frac{d 0}{d x}+3 x^{2}(0)=0
$$

(c) (10 points) Find the general formula for other solutions to this equation.

$$
\begin{aligned}
& \int \frac{1}{y^{2}} d y=-\int 3 x^{2} d x \\
& \Rightarrow-\frac{1}{y}=-x^{3}+c \\
& \Rightarrow y^{\prime}=\frac{1}{c+x^{3}}
\end{aligned}
$$

2. (15 points) Consider the following differential equation:

$$
\frac{d y}{d x}+2 x y=x
$$

(a) (5 points) Short Answer: For this differential equation, check all boxes that apply.

\square First order	\square Second order
\square Linear	\square Nonlinear
\square Constant coefficient	\square Non-constant coefficients
\square Homogeneous	\square Non-homogeneous

(b) (10 points) Find the general formula for solutions to this equation.

$$
\begin{aligned}
& e^{x^{2}} \frac{d y}{d x}+2 x e^{x^{2}} y=x e^{x^{2}} \\
\Rightarrow & \frac{d}{d x}\left(e^{x^{2}} y\right)=x e^{x^{2}} \\
\Rightarrow & e^{x^{2}} y=\frac{1}{2} e^{x^{2}}+c \\
\Rightarrow & y=\frac{1}{2}+c e^{-x^{2}}!
\end{aligned}
$$

3. (20 points) Consider the following differential equation:

$$
y^{\prime \prime}(x)+y^{\prime}(x)-2 y(x)=0 .
$$

(a) (5 points) Short Answer: For this differential equation, check all boxes that apply.First orderSecond orderLinearNonlinear
$\boxed{\square}$ Constant coefficient \square Non-constant coefficients
HomogeneousNon-homogeneous
(b) (10 points) Find the general solution to this equation.

$$
\begin{aligned}
& y(x)=c^{\lambda x} \\
\Rightarrow & \lambda^{2}+\lambda-2=0 \\
\Rightarrow & (\lambda+2)(\lambda-1)>0 \\
\Rightarrow & \lambda=-2, \lambda=1 \\
\Rightarrow & y=c_{1} e^{-2 x}+c_{2} e^{x}
\end{aligned}
$$

(c) (5 points) Use your general to solve this differential equation with the following initial conditions

$$
\begin{gathered}
\begin{array}{c}
y(0)=1, \\
y^{\prime}(0)=0 .
\end{array} \\
y(0)=1 \Rightarrow c_{1}+c_{2}=1 \\
y^{\prime}(0)=0 \Rightarrow-2 c_{1}+c_{2}=0 \\
c_{2}=2 c_{1} \\
\Rightarrow 3 c_{1}=1 \\
\Rightarrow c_{1}=1 / 3 \\
c_{2}=2 / 3 \\
y=1 / 3 e^{-2 x}+2 / 3 e^{x}
\end{gathered}
$$

4. (20 points) Consider the following differential equation:

$$
y^{\prime \prime}(x)+2 y(x)=6 e^{2 x}-4 e^{-2 x} .
$$

(a) (5 points) Short Answer: For this differential equation, check all boxes that apply.

\square First order	\square Second order
\square Linear	\square Nonlinear
\square Constant coefficient	\square Non-constant coefficients
\square Homogeneous	\square Non-homogeneous

(b) (15 points) Find the general solution to this equation.

$$
\begin{aligned}
& y_{H}=c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x) \\
& y_{p}=A e^{2 x}+B c^{-2 x} \\
& y_{p}^{\prime \prime}=4 A e^{2 x}+4 B e^{-2 x} \\
& \Rightarrow 6 A=6, \quad 6 B=-4 \\
& \Rightarrow A=1, \quad B=-2 / 3 \\
& y=c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x) \cdots+e^{2 x}-2 / 3 e^{-2 x}
\end{aligned}
$$

5. (15 points) Suppose $T: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$ is a linear transformation so that

$$
T\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \text { and } T\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] .
$$

(a) (5 points) Find

$$
\begin{gathered}
T\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { and } T\left[\begin{array}{l}
0 \\
1
\end{array}\right] . \\
T\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\frac{1}{2} T\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\frac{1}{2} T\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
0
\end{array}\right] \\
T\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\frac{1}{2} T\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\frac{1}{2} T\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
\end{gathered}
$$

(b) (5 points) Find the matrix representation of T.

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & -1
\end{array}\right]
$$

(c) (5 points) What is the co-domain, range, and kernel of T ? Hint: All of the calculations needed for this problem were done in part (a).

$$
\begin{aligned}
& \text { Co-danin }=\mathbb{R}^{2} \\
& \text { range }=\operatorname{spon}\left\{\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right\} \\
& \text { Kernel }=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\}
\end{aligned}
$$

6. (10 points) Consider the following differential equation

$$
\frac{d x}{d t}=f(x)
$$

where $f(x)$ is plotted below.

(a) (5 points) Short Answer: On the figure, indicate the location of any fixed points, i.e. equilibrium points.
(b) (5 points) Short Answey: On one axis sketch the solutions curyes for this differential equation as functions of time. Include enough solution curves so that they illustrate all possible qualitatively different possibilities.

