Homework \#6

Due Date: March 25, 2022

1. In the following problems sketch the solution curves as functions of time t for the following differential equations. Be sure to calculate any inflection points and make sure your solution curves change concavity at the correct points.
(a) $\frac{d x}{d t}=4 x^{2}-16$
(b) $\frac{d x}{d t}=x-x^{3}$
(c) $\frac{d x}{d t}=1+\frac{1}{2} \cos (x)$
(d) $\frac{d x}{d t}=1-2 \cos (x)$
(e) $\frac{d x}{d t}=e^{-x} \sin (x)$
2. Consider the differential equation

$$
\frac{d x}{d t}=f(x),
$$

where $f(x)$ is plotted below.

(a) On the figure indicate any fixed points, i.e. equilibrium points, for this differential equation.
(b) On one axis, sketch the corresponding solutions curves $x(t)$ for this problem. Your solution curves should contain all possible qualitatively different types of solution curves.
3. The curves $x(t)$ illustrated below correspond to solution curves for the differential equation $\frac{d x}{d t}=f(x)$.

Figure 1:
(a) Sketch a graph of $f(x)$ that is consistent with the above figure.
(b) Give a formula for $f(x)$ that is consistent with the above figure.
4. For each of (a)-(d) find an equation $\frac{d x}{d t}=f(x)$ with the stated properties, or if there are no examples, explain why not. In each problem, assume that f is a smooth function, i.e. infinitely differentiable.
(a) Every real number is a fixed point.
(b) Every integer is a fixed point, and there are no others.
(c) There are no fixed points.
(d) There are precisely 100 fixed points.

Homework \#6
PR.F, \#L
a.) $\frac{d x}{d t}=4 x^{2}-16$

b.) $\frac{d x}{d t}=x-x^{3}$

$$
\text { c.) } \begin{aligned}
\frac{d x}{d t} & =1+\frac{1}{2} \cos (x) \\
\Rightarrow \frac{d^{2} x}{d t^{2}} & =-\frac{1}{2} \sin (x)\left(1+\frac{1}{2} \cos (x)\right)
\end{aligned}
$$

(c). $\frac{d x}{d t}=e^{-x} \sin (t)$

\#3.

$$
f(x)=(x-2)^{2}(x+1)
$$

进 4
(a) $f(x)=0$
(6) $f(x)=\sin (x \pi x)$
(c) $f(x)=1$
(d) $f(x)=(x-1) \cdots(x-100)$

$$
\begin{aligned}
& \frac{d x}{d x}=\frac{x^{2} y^{3}+3 x y^{3}}{2 x^{2} y}=y^{2}(x+3) \\
& \Rightarrow \int \frac{1}{y^{2}} d y=\int\left(\frac{1}{2}+\frac{3}{x}\right) d x \\
& \Rightarrow-\frac{1}{y}=\frac{1}{2} x+3 \ln (1 x)+c \\
& \Rightarrow y=-\frac{1}{1 / 2 x+\frac{3}{2} h(|x|)+c}
\end{aligned}
$$

$\frac{\text { 2y. } 124,14}{3 \frac{d y}{d x}}=2 x y-y$

$$
\begin{aligned}
& y(2)=1 \\
\Rightarrow & \frac{3}{y} \frac{d y}{d x}=2 x-1 \\
\Rightarrow & \int_{1}^{y} \frac{3}{y} d y=\int_{2}^{x}(2 x-1) d x \\
\Rightarrow & 3 \operatorname{hn}(|y|)=x^{2}-x-4+2 \\
\Rightarrow & h(|y|)=\frac{x^{2}-x-2}{3} \\
\Rightarrow & |y|=\exp \left(\frac{x^{2}-x-2}{3}\right)
\end{aligned}
$$

To satist, iaitial conditions

$$
y(x)=\exp \left(\frac{x^{2}-x-2}{3}\right)
$$

