MST 750 Homework #1

Due Date: January 14, 2022

- 1. For the equation $\dot{x} = f(x)$, where f is continuously differentiable, show that if x(t) is a solution then so is $x(t t_0)$ for any t_0 .
- 2. For the equation $\dot{x} = f(x)$, show that if $\cos(t)$ is a solution, then $-\sin(t)$ is also a solution.
- 3. For the equation $\ddot{x} = f(x)$, where f is continuously differentiable,
 - (a) Show that if 1/(1+t) is a solution, then 1/(1-t) is also a solution.
 - (b) Find f such that 1/(1+t) is a solution.
- 4. Solve the following differential equations:
 - (a) $\dot{x} = x^3$
 - (b) $\dot{x} = x(1-x)$
 - (c) $\dot{x} = x(1-x) c$
- 5. Suppose f, g are continuously differentiable functions defined on all of \mathbb{R} . Show that the equation

$$\dot{x} = f(x)g(t), \quad x(t_0) = x_0,$$

locally has a unique solution if $f(x_0) \neq 0$. Give an implicit formula for the solution.

- 6. Solve the following differential equations:
 - (a) $\dot{x} = \sin(t)x$
 - (b) $\dot{x} = g(t) \tan(x)$
 - (c) $\dot{x} = \sin(t)e^x$
- 7. Consider the following differential equation

$$\dot{x} = \begin{cases} -t\sqrt{|x|}, & x \ge 0, \\ t\sqrt{|x|}, & x \le 0. \end{cases}$$

- (a) Show that if x(t) is a solution then so is -x(t) and x(-t).
- (b) Show that without loss of generality, we can assume $x_0 \ge 0$ and $t \ge 0$.
- (c) Show that the initial value problem $x(0) = x_0$ has a unique global solution.
- (d) Show that global solutions can intersect. How does this not violate uniqueness of solutions?