MST 750
 Homework \#3

Due Date: January 28, 2022

1. Consider a linear system of ordinary differential equations on \mathbb{R}^{n} defined by

$$
\dot{\mathbf{x}}=A \mathbf{x}
$$

where $A \in \mathbb{R}^{n \times n}$. In this problem we will prove that the set of solutions forms a linear space of dimension n. To do so we need to prove that that solution set is a vector space and is the span of n linearly independent solutions.
(a) Show that if $\mathbf{x}_{1}(t)$ and $\mathbf{x}_{2}(t)$ are solutions then $\mathbf{x}_{1}(t)+\mathbf{x}_{2}(t)$ and $a \mathbf{x}(t)$ are also solutions for all $a \in \mathbb{R}$. This proves that solutions form a linear subspace of the vector space of continuous curves on \mathbb{R}^{n} and is thus a vector space.
(b) Let e_{1}, \ldots, e_{n} be a basis of \mathbb{R}^{n}. For $i=1, \ldots, n$, let $\mathbf{x}_{i}(t)$ be the unique solution of this system satisfying $\mathbf{x}_{i}(0)=e_{i}$. Assuming existence and uniqueness of solutions, show that all solutions can be written as a linear combination of the functions $\mathbf{x}_{i}(t)$.
(c) Show that the functions \mathbf{x}_{i} are linearly independent.
2. pg. $63, \# 3$.
3. pg. $63, \# 5$.
4. In this problem you will prove that the space of $n \times n$ real valued matrices $\mathbb{R}^{n \times n}$ is a Banach space with the standard matrix norm $\|\cdot\|$. Recall, a Banach space is a complete normed linear space and a complete space is one in which all Cauchy sequences converge to an element of the space. Consequently, all we need to show is that a Cauchy sequence of matrices converges to a real valued matrix.
(a) Write down the definition of what it means for a sequence of matrices to be a Cauchy sequence with respect to $\|\cdot\|$.
(b) Prove for all $A \in \mathbb{R}^{n \times n}$ that

$$
\max _{j, k}\left|A_{j, k}\right| \leq\|A\| \leq n \max _{j, k}\left|A_{j, k}\right|
$$

(c) Use part (b) to prove that if $A^{(n)}$ is a Cauchy sequence with respect to the matrix norm $\|\cdot\|$ then the entries of $A_{i, j}^{(n)}$ are also Cauchy as a sequence of real numbers and thus by completeness of \mathbb{R} converge to a value $A_{i, j}^{*}$.
(d) Using part (c) and (b) prove that $A^{(n)}$ converges to A^{*}, where A^{*} is the matrix with entries $A_{i, j}^{*}$.
5. In this problem we will show that for $A \in \mathbb{R}^{n \times n}$, the matrix exponential

$$
\exp (A)=\sum_{n=0}^{\infty} \frac{1}{n!} A^{n}
$$

is well defined.
(a) Show that if $A, B \in \mathbb{R}^{n \times n}$ then

$$
\|A B\| \leq\|A\|\|B\|
$$

Conclude that for all $n \in \mathbb{N},\left\|A^{n}\right\| \leq\|A\|^{n}$. You don't have to be overwrought with showing this conclusion. I don't want to see a trivial induction argument or the use of a compass.
(b) Show that if $A, B \in \mathbb{R}^{n \times n}$ then

$$
\|A+B\| \leq\|A\|+\|B\| .
$$

Conclude that if $A^{(n)}$ is a sequence in $\mathbb{R}^{n \times n}$ then

$$
\left\|\sum_{n=0}^{M} A^{(n)}\right\| \leq \sum_{n=0}^{M}\left\|A^{(n)}\right\| .
$$

Again, no need to drag out the proof of the conclusion.
(c) Let $A^{(n)}$ be a sequence in \mathbb{R}^{n}. Show that

$$
\sum_{n=0}^{\infty} A^{(n)}
$$

converges if $\sum_{n=0}^{\infty}\left\|A^{(n)}\right\|$ converges. Hint: The way I like doing problems like this is by showing the sequence of partial sums is Cauchy.
6. Given a matrix $A \in \mathbb{R}^{n \times n}$, let

$$
\cos (A)=\frac{e^{i A}+e^{-i A}}{2} \text { and } \sin (A)=\frac{e^{i A}-e^{-i A}}{2 i}
$$

Compute these functions for the following matrices:

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \text { and } C=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] .
$$

