MST 750 Homework #3

Due Date: January 28, 2022

1. Consider a linear system of ordinary differential equations on \mathbb{R}^n defined by

 $\dot{\mathbf{x}} = A\mathbf{x},$

where $A \in \mathbb{R}^{n \times n}$. In this problem we will prove that the set of solutions forms a linear space of dimension n. To do so we need to prove that that solution set is a vector space and is the span of n linearly independent solutions.

- (a) Show that if $\mathbf{x}_1(t)$ and $\mathbf{x}_2(t)$ are solutions then $\mathbf{x}_1(t) + \mathbf{x}_2(t)$ and $a\mathbf{x}(t)$ are also solutions for all $a \in \mathbb{R}$. This proves that solutions form a linear subspace of the vector space of continuous curves on \mathbb{R}^n and is thus a vector space.
- (b) Let e_1, \ldots, e_n be a basis of \mathbb{R}^n . For $i = 1, \ldots, n$, let $\mathbf{x}_i(t)$ be the unique solution of this system satisfying $\mathbf{x}_i(0) = e_i$. Assuming existence and uniqueness of solutions, show that all solutions can be written as a linear combination of the functions $\mathbf{x}_i(t)$.
- (c) Show that the functions \mathbf{x}_i are linearly independent.
- 2. pg. 63, #3.
- 3. pg. 63, #5.
- 4. In this problem you will prove that the space of $n \times n$ real valued matrices $\mathbb{R}^{n \times n}$ is a Banach space with the standard matrix norm $\|\cdot\|$. Recall, a Banach space is a complete normed linear space and a complete space is one in which all Cauchy sequences converge to an element of the space. Consequently, all we need to show is that a Cauchy sequence of matrices converges to a real valued matrix.
 - (a) Write down the definition of what it means for a sequence of matrices to be a Cauchy sequence with respect to $\|\cdot\|$.
 - (b) Prove for all $A \in \mathbb{R}^{n \times n}$ that

$$\max_{j,k} |A_{j,k}| \le ||A|| \le n \max_{j,k} |A_{j,k}|.$$

- (c) Use part (b) to prove that if $A^{(n)}$ is a Cauchy sequence with respect to the matrix norm $\|\cdot\|$ then the entries of $A_{i,j}^{(n)}$ are also Cauchy as a sequence of real numbers and thus by completeness of \mathbb{R} converge to a value $A_{i,j}^*$.
- (d) Using part (c) and (b) prove that $A^{(n)}$ converges to A^* , where A^* is the matrix with entries $A^*_{i,j}$.
- 5. In this problem we will show that for $A \in \mathbb{R}^{n \times n}$, the matrix exponential

$$\exp\left(A\right) = \sum_{n=0}^{\infty} \frac{1}{n!} A^n,$$

is well defined.

(a) Show that if $A, B \in \mathbb{R}^{n \times n}$ then

$$||AB|| \le ||A|| ||B||.$$

Conclude that for all $n \in \mathbb{N}$, $||A^n|| \leq ||A||^n$. You don't have to be overwrought with showing this conclusion. I don't want to see a trivial induction argument or the use of a compass.

(b) Show that if $A, B \in \mathbb{R}^{n \times n}$ then

$$||A + B|| \le ||A|| + ||B||.$$

Conclude that if $A^{(n)}$ is a sequence in $\mathbb{R}^{n \times n}$ then

$$\left\|\sum_{n=0}^{M} A^{(n)}\right\| \le \sum_{n=0}^{M} \left\|A^{(n)}\right\|.$$

Again, no need to drag out the proof of the conclusion.

(c) Let $A^{(n)}$ be a sequence in \mathbb{R}^n . Show that

$$\sum_{n=0}^{\infty} A^{(n)}$$

converges if $\sum_{n=0}^{\infty} \|A^{(n)}\|$ converges. **Hint:** The way I like doing problems like this is by showing the sequence of partial sums is Cauchy.

6. Given a matrix $A \in \mathbb{R}^{n \times n}$, let

$$\cos(A) = \frac{e^{iA} + e^{-iA}}{2}$$
 and $\sin(A) = \frac{e^{iA} - e^{-iA}}{2i}$.

Compute these functions for the following matrices:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \text{ and } C = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$