MST 750
 Homework \#3

Due Date: January 28, 2022

1. Consider a linear system of ordinary differential equations on \mathbb{R}^{n} defined by

$$
\dot{\mathrm{x}}=A \mathbf{x}
$$

where $A \in \mathbb{R}^{n \times n}$. In this problem we will prove that the set of solutions forms a linear space of dimension n. To do so we need to prove that that solution set is a vector space and is the span of n linearly independent solutions.
(a) Show that if $\mathbf{x}_{1}(t)$ and $\mathbf{x}_{2}(t)$ are solutions then $\mathbf{x}_{1}(t)+\mathbf{x}_{2}(t)$ and $a \mathbf{x}(t)$ are also solutions for all $a \in \mathbb{R}$. This proves that solutions form a linear subspace of the vector space of continuous curves on \mathbb{R}^{n} and is thus a vector space.
(b) Let e_{1}, \ldots, e_{n} be a basis of \mathbb{R}^{n}. For $i=1, \ldots, n$, let $x_{i}(t)$ be the unique solution of this system satisfying $\mathbf{x}_{i}(0)=e_{i}$. Assuming existence and uniqueness of solutions, show that all solutions can be written as a linear combination of the functions $\mathbf{x}_{i}(t)$.
(c) Show that the functions \mathbf{x}_{i} are linearly independent.
2. pg. 63, \#3.
3. pg. $63, \# 5$.
4. In this problem you will prove that the space of $n \times n$ real valued matrices $\mathbb{R}^{n \times n}$ is a Banach space with the standard matrix norm $\|\cdot\|$. Recall, a Banach space is a complete normed linear space and a complete space is one in which all Catuchy sequences converge to an element of the space. Consequently, all we need to show is that a Cauchy sequence of matrices converges to a real valued matrix.
(a) Write down the definition of what it means for a sequence of matrices to be a Cauchy sequence with respect to $\|\cdot\|$.
(b) Prove for all $A \in \mathbb{R}^{n \times n}$ that

$$
\max _{j . k}\left|A_{j . k}\right| \leq\|A\| \leq n \max _{j, k}\left|A_{j, k}\right|
$$

(c) Use part (b) to prove that if $A^{(n)}$ is a Cauchy sequence with respect to the matrix norm $\|\cdot\|$ then the entries of $A_{i, j}^{(n)}$ are also Cauchy as a sequence of real numbers and thus by completeness of \mathbb{R} converge to a value $A_{i, j}^{*}$.
(d) Using part (c) and (b) prove that $A^{(n)}$ converges to A^{*}, where A^{*} is the matrix with entries $A_{i, j}^{*}$.
5. In this problem we will show that for $A \in \mathbb{R}^{n \times n}$, the matrix exponential

$$
\exp (A)=\sum_{n=0}^{\infty} \frac{1}{n!} A^{n}
$$

is well defined.
(a) Show that if $A, B \in \mathbb{R}^{n \times n}$ then

$$
\|A B\| \leq\|A\|\|B\|
$$

Conclude that for all $n \in \mathbb{N},\left\|A^{n}\right\| \leq\|A\|^{n}$. You don't have to be overwrought with showing this conclusion. I don't want to see a trivial induction argument or the use of a compass.
(b) Show that if $A, B \in \mathbb{R}^{n \times n}$ then

$$
\|A+B\| \leq\|A\|+\|B\| .
$$

Conclude that if $A^{(n)}$ is a sequence in $\mathbb{R}^{n \times n}$ then

$$
\left\|\sum_{n=0}^{M} A^{(n)}\right\| \leq \sum_{n=0}^{A I}\left\|A^{(n)}\right\|
$$

Again, no need to drag out the proof of the conclusion.
(c) Let $A^{(n)}$ be a sequence in \mathbb{R}^{n}. Show that

$$
\sum_{n=0}^{\infty} A^{(n)}
$$

converges if $\sum_{n=0}^{\infty}\left\|A^{(n)}\right\|$ converges. Hint; The way I like doing problems like this is by showing the sequence of partial sums is Cauchy.
6. Given a matrix $A \in \mathbb{R}^{n \times n}$, let

$$
\cos (A)=\frac{e^{i A}+e^{-i A}}{2} \text { and } \sin (A)=\frac{e^{i A}-e^{-i A}}{2 i} .
$$

Compute these functions for the following matrices:

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \text { and } C=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

Homework \#3
\#1.
Prove that the set of solutions to the equation

$$
\vec{x}=A \vec{x}
$$

forms a linear subspace of dimensien_n.
Solution:
(a) First, if \vec{x}_{1}, \vec{x}_{2} are solutions and $a \in \mathbb{R}$ it follows that if $\vec{y}_{1}=\vec{x}_{1}+\vec{x}_{2}$ and $\vec{y}_{2}=a \vec{x}_{1}$ then

$$
\begin{aligned}
y_{1} & =\dot{\vec{x}}_{1}+\dot{x}_{2} \\
& =A \dot{x}_{1}+A \vec{x}_{2} \\
& =A\left(\vec{x}_{1}+\vec{x}_{2}\right) \\
& =A \vec{y}_{1}
\end{aligned}
$$

and

$$
\begin{aligned}
\dot{\vec{y}}_{2} & =a \dot{\vec{x}}_{1} \\
& =a A \dot{x}_{1} \\
& =A a \vec{x}_{1} \\
& =A \dot{y}_{2} .
\end{aligned}
$$

That is, \vec{y}_{1}, \vec{y}_{2} are solutions as well.
(b) Let. $\vec{x}(t)$ be the unigueisolution satisfying

$$
\vec{X}_{i}(0)=\vec{X}_{0}=c_{1} \vec{e}_{i}+\cdots+c_{n_{1}} \vec{e}_{1}
$$

Therefore, by existence and uniqueness of solutions:

$$
\left.\vec{x}(t)=c_{1} \vec{x}_{1}(t)+\ldots+c_{n} \vec{x}_{n}(t)\right)_{r}
$$

(c). Finally, suppose there exists $c_{1}, \ldots, c_{n} \in \mathbb{R}^{n}$ such that

$$
c_{1} \vec{x}_{1}(t) \pm_{0.0}+c_{n} \vec{x}_{n}(t)=0 .
$$

By existence and uniqueness, the above equation must be true for all t since $\vec{x}(t)=\overrightarrow{0}$ is a solution.
Consequently

$$
\begin{aligned}
& c_{1} \vec{x}_{1}(0)+\ldots+c_{n} \vec{x}_{n}(0)=0 \\
\Rightarrow & c_{1} \vec{e}_{1}+\ldots+c_{n} \vec{e}_{n}=0
\end{aligned}
$$

Therefore, by liner independence of $\vec{\varepsilon}_{1}, \ldots, \vec{e}_{n}$ it follows that $c_{1}=\ldots=c_{n}=0$. Consequently $\dot{x}_{1}, \ldots, \dot{x}_{n}$ are linearly independent.

苂2
Show that it is T is a bounded linear operator and is invertible, then

$$
\left\|T^{-}\right\| \geq \frac{1}{\|T\|}
$$

pron:

$$
\begin{aligned}
& \frac{7}{7}=\|I\|=\left\|T^{-1} T\right\| \leq\left\|T^{-1}\right\| \cdot\|T\| \\
& \Rightarrow\|T\| \geq \frac{1}{\left\|T^{-1}\right\|}
\end{aligned}
$$

\#3.
Prove that a linemen operator is bounded if and only if it is continuous.
puff'.
(a) We first prove that if T is continuous at 0 it is continuous everywhere. If T is continuous at 0 it follows that for all $x_{n} \rightarrow 0$ that,

$$
\lim _{n \rightarrow \infty} T\left(x_{n}\right)=T\left(\lim _{n \rightarrow \infty} x_{n}\right)=T(0)=0
$$

Now, suppose $y_{n} \rightarrow y$ and define $x_{n}=y_{n}-y$. Conseyuntyos $x_{n} \rightarrow 0$ and thus by linearity:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} T\left(y_{n}\right) & =\lim _{n \rightarrow \infty} T\left(x_{n}+y\right) \\
& =\lim _{n \rightarrow \infty} T\left(x_{n}\right)+\lim _{n \rightarrow \infty} T(y) \\
& =T\left(\lim _{n \rightarrow \infty} x_{n}\right)+T(y) \\
& =T(0)+T\left(\lim _{n \rightarrow \infty} y_{n}\right)
\end{aligned}
$$

Therefore,

$$
\lim _{n \rightarrow \infty} T\left(y_{n}\right)=T\left(\lim _{n \rightarrow \infty} y_{n}\right)
$$

(b) Now, if $x_{n} \rightarrow 0$ and T is pounded it follows that

$$
\| T\left(x_{n}\|\leq\| T\|\cdot\| x_{n} \|\right.
$$

and thus if $x_{n} \rightarrow 0$ it follows that $\left\|T\left(x_{n}\right)\right\| \rightarrow 0$.
(c) Suppose T is unbounded. Therefore, there exists a sequence x_{n} such that $\left\|T\left(x_{n}\right)\right\|: r n\left\|x_{n}\right\|$ Letting $y_{n}=x_{n} /\left(n \| x_{0} i_{n}\right.$ it follows that $\| y_{n} H=1 / n$ and thus $y_{n} \rightarrow 0$. However,

$$
\left\|T\left(y_{n}\right)\right\|=\frac{\left\|T\left(x_{n}\right)\right\|}{\therefore!x_{n} \|} \geq 1
$$

and thus $T\left(y_{n}\right)-t 0$ proving T is not continuous at 0 . Therefore, if T is continuous at 0 it is bounded.

Prove that $\mathbb{R}^{n \times n}$ is a Banach space with the induced norm.
pop:
Let' $A^{(m)} \in \mathbb{R}^{n \times n}$ be a Cauchy sequence with respect to the induced norm. That is for all $\varepsilon>0$ thane exists $N \in \mathbb{N}$ such that $m, k \geq N$ implies $\left\|A^{(m)}-A^{(k)}\right\|<\varepsilon$. To prove $A^{(m)}$ converges we first consmact a candidate limit point. To do so we prove two intermediate results.

1. First, note that

$$
\begin{aligned}
\|A(x)\| & =\left\|\sum_{i} A_{i j} x_{j}\right\| \\
& =\left(\sum_{i}^{i}\left(\sum_{i} A_{i j} x_{j}\right)^{2}\right)^{1 / 2} \\
& \leq\left(\sum_{i}\left(\sum_{i}\left|A_{i j}\right|\left|x_{j}\right|\right)^{2}\right)^{1 / 2} \\
& \leq\left(\sum_{i}\left(\sum_{i} \max _{i, i}\left|A_{i j}\right| \cdot\left|x_{j}\right|\right)^{2}\right)^{1 / 2}
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
& \text { nsequently, } \\
& \|A(x)\|=\max _{i, i} \mid A_{i j}\left(\sum_{i}\left(\sum_{T}\left|x_{j}\right|\right)^{2}\right)^{1 / 2} .
\end{aligned}
$$

If $\|x\|=1$ it follows that $\left|x_{j}\right| \leq 1$ and the

$$
\begin{aligned}
\|A(x)\| & \leq \max _{i j i}\left|A_{i j}\right|\left(\sum_{i} \sum_{i} 1\right)^{1 / 2} \\
& =\max _{i, i}\left|A_{i j}\right| n .
\end{aligned}
$$

Therefore,

$$
\|A\|=\sup _{\|x\|=1}\|A(x)\| \leq n \max _{i, j}\left|A_{i j}\right|
$$

2. Let i, \dot{j}^{*} satisfy $\max _{i, j}\left|A_{i j}\right|=\left|A_{i ; j} ;\right|$. Let \vec{x}^{*} satisfy

$$
x_{i}^{*}= \begin{cases}0 & f^{2, j} i \neq i_{i}^{*} \\ 1 & \text { if } i=j_{i}^{*}\end{cases}
$$

Therefore,

$$
\begin{aligned}
\left\|A\left(\dot{x}^{*}\right)\right\| & =\left(\sum_{i}\left(\sum_{i} A_{i j} x_{j}\right)^{2}\right)^{1 / 2} \\
& =\left(\sum_{i} A_{i j} j^{2}\right)^{1 / 2} \\
& \geq\left(A_{i}{ }^{*} j^{\mu^{2}}\right)^{1 / 2} \\
& =\mid A_{i}{ }^{+} j^{*}+1
\end{aligned}
$$

Consequently, since $\left\|\dot{x}^{*}\right\|=1$ it follows that

By items 1-2 it follows that

$$
\max _{1, i}\left|A_{i j}\right|\|A\| \leq n \max _{i, i}\left|A_{i j}\right|
$$

Conseyuntly, for all $\lambda_{1 i}\left|A_{i j}\right| \leq\|A\| l$. It follows that if A^{\prime} is Caving then so are the real numbers
$A_{i j}$ since

$$
\left|A_{i j}^{(m)}-A_{i j}^{(k)}\right| \leq\left\|A_{i j}^{(i-1}-A_{i j}^{(k)}\right\|
$$

Therefore, for each is i there exists $A_{i j}$ such that $A_{i j j}^{(m)} \rightarrow A_{i j}$. Let $A \in \mathbb{R}^{n \times w}$ be the matrix with entries $A_{i j}$. Sires, $\max _{i j}\left|A_{i j}^{(r)}-A_{j j}\right| \rightarrow 0$ it follows that $\left\|A^{(n)}-A\right\| \rightarrow 0$ since

$$
\left\|A^{(m)}-A\right\|<\max _{i, j}\left|A_{i j}^{(m)}-A_{i j}\right| .
$$

\# 5
Prove that for $A \in \mathbb{R}^{n \times n}$,

$$
\exp (A)=\sum_{n=0}^{\infty} \frac{1}{n!} A^{n}
$$

is well defined.

For $A, B \in \mathbb{R}^{n \times n}$ it follows that since $\|A y\| \leq\|A\| b\left\|_{y}\right\|$ that

$$
\begin{aligned}
\|A B\| & =\operatorname{supp}_{x}\|A B x\| \\
& \leq \operatorname{supp}_{x}\|A\| \cdot\|B x\| \\
& =\|A\| \cdot\|B\|
\end{aligned}
$$

Consequently, for all $k \in \mathbb{N}$

$$
\|A-\| \leq\|A\|
$$

Moreover,

$$
\begin{aligned}
&\|A+B\|=\sup _{x}\|(A+B) x\| \leq \sup _{x}\|A x+B x\| \leq \sup _{x}\|A x\|+\|B x\| \\
& \Rightarrow\|A+B\| \leq \sup _{x}\|A x\|+\sup \|B x\|=\|A\|+\|B\| .^{x} \|
\end{aligned}
$$

If we let

$$
S^{w c}=\sum_{n=0}^{(m)} 1 / n!A^{n}
$$

it follows that k

$$
\begin{aligned}
& \text { follows that } \\
&\left\|s^{(k)}-s^{(n)}\right\|=\left\|\sum_{n=-}^{k} 1 / n!A^{n}\right\| \\
& \leq \sum_{n=m}^{k} 1 / n!\|A\|^{n}=\left|s_{k}^{2}+s_{m}\right|
\end{aligned}
$$

Where S_{k} is the sequence of real numbers $\begin{aligned} \text { defined by } & : \sum_{n=0}^{k} 1 / n!\|A\|^{n} .\end{aligned}$
Since $\underset{k \rightarrow \infty}{\lim _{k}} s_{k}=\exp (\|A\|)$ it follows that s_{k} is Gavehy and thus S_{K} is Cavoly as well and thus by completeness convergent.

