MST 750
 Homework \#3

Due Date: February 04, 2022

1. For a real $n \times n$ matrix, show that

$$
\operatorname{det}(\exp (A))=\exp (\operatorname{tr}(A))
$$

2. Let $A(t), B(t)$, be differentiable real $n \times n$ matrices.
(a) Prove that

$$
\frac{d}{d t} A(t) B(t)=\dot{A}(t) B(t)+A(t) \dot{B}(t)
$$

(b) Prove that

$$
\frac{d}{d t} A(t)^{-1}=-A(t)^{-1} \dot{A}(t) A(t)^{-1}
$$

3. Let A, B be $n \times n$ real matrices.
(a) Find an explicit solution to the equation

$$
\begin{aligned}
\dot{x} & =t A x, \\
x(0) & =x_{0} .
\end{aligned}
$$

Hint: Assume A is a scalar and solve this equation and see if the form of the solution generalizes to the matrix case.
(b) Show that if $[A,[A, B]]=[B,[A, B]]=0$ then

$$
\exp (A t) \exp (B t)=\exp ((A+B) t) \exp \left([A, B] t^{2} / 2\right)
$$

Hint: Show that

$$
x(t)=\exp (-(A+B) t) \exp (B t) \exp (A t) x_{0}
$$

is a solution of the equation

$$
\begin{aligned}
\dot{x} & =t[A, B] x \\
x(0) & =x_{0} .
\end{aligned}
$$

4. For the following matrices find the explicit solution to the equation

$$
\begin{aligned}
\dot{x} & =A x \\
x(0) & =x_{0}
\end{aligned}
$$

and identify the stable, unstable, and center subspaces.
(a) $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$.
(b) $A=\left[\begin{array}{cc}0 & -2 \\ 1 & 0\end{array}\right]$.
(c) $A=\left[\begin{array}{cc}2 & 1 \\ 0 & -4\end{array}\right]$.
(d) $A=\left[\begin{array}{ccc}2 & 0 & 1 \\ 1 & 2 & -2 \\ -1 & 0 & 2\end{array}\right]$.
5. Let $f, g: \mathbb{R} \mapsto \mathbb{R}$ be T periodic continuous functions. Show that if the equation

$$
\dot{x}=f(t) x
$$

has no T-periodic solutions other than the 0 function, then the equation

$$
\dot{x}=f(t) x+g(t)
$$

has a unique T-periodic solution.
6. pg. $66, \# 17$
7. pg. $66, \# 18$
8. pg. $66, \# 19$

