MST 750
 Homework \#3

Due Date: February 28, 2022

1. pg. 97, \#1.
2. pg. $97, \# 3$.
3. Let I be a closed and bounded interval in \mathbb{R} containing 0 .
(a) Let $Y \subset C^{0}(I ; \mathbb{R})$ be the space of Lipschitz continuous functions with Lipschitz constant $L>0$. Show that Y is a Banach space with respect to the norm $\|f\|_{\infty}=\sup _{t \in I}\{|f(t)|\}$.
(b) Let $Z \subset Y$ be defined by $Z=\{f \in Y: f(0)=0\}$. Show that the mapping $\|\cdot\|_{Z}: Z \mapsto \mathbb{R}$ defined by

$$
\|f\|_{Z}=\sup _{t \in I \backslash\{0\}}\left\{\frac{|f(t)|}{|t|}\right\}
$$

defines a norm on Z.
(c) Prove for all $f, g \in Z$ that $\|f-g\|_{Z} \leq L$.
(d) Prove that Z with respect to the norm $\|\cdot\|_{Z}$ is a Banach space.
4. In this problem you will need the following definition. A map $T: X \mapsto Y$ between two Banach spaces with norms $\|\cdot\|_{X}$ and $\|\cdot\|_{Y}$ is continuous if for all $x_{n} \in X$ satisfying $x_{n} \rightarrow x^{*}$, i.e. $\lim _{n \rightarrow \infty}\left\|x_{n}-x^{*}\right\|_{X}=0$, it follows that $T\left(x_{n}\right) \rightarrow T(x)$, i.e. $\lim _{n \rightarrow \infty}\left\|T\left(x_{n}\right)-T(x)\right\|_{Y}=0$.
(a) If X is Banach space prove for all $f, g \in X$ that $|\|f\|-\|g\||<\|f-g\|$.
(b) If X is Banach space prove that the norm on X is continuous when viewed as a map from X to \mathbb{R}. That is, prove that the map $T: X \mapsto \mathbb{R}$ defined by $T(f)=\|f\|$ is continuous.
(c) If X, Y are Banach spaces with the norms $\|\cdot\|_{X}$ and $\|\cdot\|_{Y}$ prove that the product space $X \times Y$ with the norm $(f, g)=\|f\|_{X}+\|g\|_{Y}$ is a Banach space.
(d) If X is a Banach space prove that the transformation $T: X \times X \mapsto X$ defined by $T(f, g)=f+g$ is a continuous map from $X \times X$ into X.
(e) If X a Banach space prove that the map $T: X \times \mathbb{R} \mapsto X$ defined by $T(f, a)=a f$ is continuous.
5. Let $T: X \mapsto X$ be a transformation of a Banach space X such that T^{m} is a contraction for some $m \in \mathbb{N}$. Show that:
(a) T has a unique fixed point $x_{0} \in X$, i.e. there exists a unique $x_{0} \in X$ such that $T\left(x_{0}\right)=x_{0}$.
(b) For each $x \in X$ the sequence $T^{n}(x)$ converges to x_{0} when $n \rightarrow \infty$.
6. pg. 98, \#4.
7. pg. $99, \# 7$. There is a typo in the book. The first guess should be $u_{0}(t)=a$.
8. Consider the following first order system.

$$
\begin{aligned}
\dot{x} & =2 t-2 \sqrt{\max \{0, x\}}, \\
x(0) & =0 .
\end{aligned}
$$

Apply Picard iteration with the initial guess $x_{0}=0$. Explicitly find the pattern for the iterations. Do the iterations converge?

