MST 750

Homework #3

Due Date: February 28, 2022

- 1. pg. 97, #1.
- 2. pg. 97, #3.
- 3. Let I be a closed and bounded interval in \mathbb{R} containing 0.
 - (a) Let $Y \subset C^0(I; \mathbb{R})$ be the space of Lipschitz continuous functions with Lipschitz constant L > 0. Show that Y is a Banach space with respect to the norm $||f||_{\infty} = \sup_{t \in I} \{|f(t)|\}$.
 - (b) Let $Z \subset Y$ be defined by $Z = \{f \in Y : f(0) = 0\}$. Show that the mapping $\|\cdot\|_Z : Z \mapsto \mathbb{R}$ defined by

$$||f||_Z = \sup_{t \in I \setminus \{0\}} \left\{ \frac{|f(t)|}{|t|} \right\}$$

defines a norm on Z.

- (c) Prove for all $f, g \in Z$ that $||f g||_Z \leq L$.
- (d) Prove that Z with respect to the norm $\|\cdot\|_Z$ is a Banach space.
- 4. In this problem you will need the following definition. A map $T: X \mapsto Y$ between two Banach spaces with norms $\|\cdot\|_X$ and $\|\cdot\|_Y$ is continuous if for all $x_n \in X$ satisfying $x_n \to x^*$, i.e. $\lim_{n\to\infty} \|x_n - x^*\|_X = 0$, it follows that $T(x_n) \to T(x)$, i.e. $\lim_{n\to\infty} \|T(x_n) - T(x)\|_Y = 0$.
 - (a) If X is Banach space prove for all $f, g \in X$ that |||f|| ||g||| < ||f g||.
 - (b) If X is Banach space prove that the norm on X is continuous when viewed as a map from X to \mathbb{R} . That is, prove that the map $T: X \mapsto \mathbb{R}$ defined by T(f) = ||f|| is continuous.
 - (c) If X, Y are Banach spaces with the norms $\|\cdot\|_X$ and $\|\cdot\|_Y$ prove that the product space $X \times Y$ with the norm $(f,g) = \|f\|_X + \|g\|_Y$ is a Banach space.
 - (d) If X is a Banach space prove that the transformation $T : X \times X \mapsto X$ defined by T(f,g) = f + g is a continuous map from $X \times X$ into X.
 - (e) If X a Banach space prove that the map $T: X \times \mathbb{R} \mapsto X$ defined by T(f, a) = af is continuous.
- 5. Let $T: X \mapsto X$ be a transformation of a Banach space X such that T^m is a contraction for some $m \in \mathbb{N}$. Show that:
 - (a) T has a unique fixed point $x_0 \in X$, i.e. there exists a unique $x_0 \in X$ such that $T(x_0) = x_0$.
 - (b) For each $x \in X$ the sequence $T^n(x)$ converges to x_0 when $n \to \infty$.
- 6. pg. 98, #4.
- 7. pg. 99, #7. There is a typo in the book. The first guess should be $u_0(t) = a$.
- 8. Consider the following first order system.

$$\dot{x} = 2t - 2\sqrt{\max\{0, x\}},$$

 $x(0) = 0.$

Apply Picard iteration with the initial guess $x_0 = 0$. Explicitly find the pattern for the iterations. Do the iterations converge?