# MST 750 <br> Homework \#6 

## Due Date: March 18, 2022

1. Consider the the following differential equation

$$
\dot{x}=f(x, t)
$$

where $f: \mathbb{R}^{n} \times \mathbb{R} \mapsto \mathbb{R}$ is continuous. Show that if $|f(t, x)-f(t, y)| \leq L(t)|x-y|$ then

$$
|x(t)-y(t)| \leq\left|x_{0}-y_{0}\right| \exp \left(\left|\int_{t_{0}}^{t} L(s) d s\right|\right)
$$

where $x, y$ are solutions to the ordinary differential equation satisfying $x\left(t_{0}\right)=x_{0}, y\left(t_{0}\right)=y_{0}$.
2. Let $u, v, w \in C^{0}([a, b] ; \mathbb{R})$ with $w>0$ such that

$$
u(t) \leq v(t)+\int_{a}^{t} w(s) u(s) d s
$$

for every $t \in[a, b]$. Prove that

$$
u(t) \leq v(t)+\int_{a}^{t} w(s) v(s) \exp \left(\int_{s}^{t} w(u) d u\right) d s
$$

3. pg. $153, \# 1$
4. pg. $153, \# 2$
5. pg. $153, \# 3$
6. pg. $153, \# 4$
7. Consider the following differential equation

$$
\dot{x}=f(x)
$$

where $f: \mathbb{R} \mapsto \mathbb{R}$ is a differentiable function satisfying $f(0)=f(1)=0$ and $f(x)>0$ for $x \in(0,1)$. Determine $\Gamma(x)$ and $\omega(x)$ if $x \in[0,1]$.
8. Denote by $d(x, A)=\inf _{y \in A}|x-y|$ the distance between a point $x \in \mathbb{R}^{n}$ and a set $A \subset \mathbb{R}^{n}$.
(a) Show that $|d(x, A)-d(z, A)| \leq|x-z|$.
(b) Prove that the mapping $x \mapsto d(x, A)$ is a continuous mapping from $\mathbb{R}^{n}$ to $\mathbb{R}$.
9. For a function $g \in C^{2}\left(\mathbb{R}^{2} ; \mathbb{R}\right)$, consider the equation

$$
\dot{x}=-\nabla g(x)
$$

(a) Show that if $u$ is a nonconstant solution, then $g \circ u$ is strictly decreasing.
(b) Show this system has no periodic orbits.
(c) For the function $g(x, y)=x^{2} y^{4}$ sketch the level sets of $g(x, y)$ overlaid on top of a phase portrait. What geometric condition must hold between the level sets and the orbits?
10. Consider the following equation in polar coordinates:

$$
\begin{aligned}
\dot{r} & =f(r), \\
\dot{\theta} & =1,
\end{aligned}
$$

where

$$
f(r)= \begin{cases}r \sin \left(1 / r^{2}\right), & r \neq 0 \\ 0, & r=0\end{cases}
$$

Show that the origin is Lyapunov stable but not asymptotically stable.

