MST 750 Homework #6

Due Date: March 18, 2022

1. Consider the following differential equation

$$\dot{x} = f(x, t),$$

where $f: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ is continuous. Show that if $|f(t,x) - f(t,y)| \leq L(t)|x-y|$ then

$$|x(t) - y(t)| \le |x_0 - y_0| \exp\left(\left|\int_{t_0}^t L(s)ds\right|\right)$$

where x, y are solutions to the ordinary differential equation satisfying $x(t_0) = x_0$, $y(t_0) = y_0$.

2. Let $u, v, w \in C^0([a, b]; \mathbb{R})$ with w > 0 such that

$$u(t) \le v(t) + \int_{a}^{t} w(s)u(s) \, ds$$

for every $t \in [a, b]$. Prove that

$$u(t) \le v(t) + \int_{a}^{t} w(s)v(s) \exp\left(\int_{s}^{t} w(u) \, du\right) ds$$

- 3. pg. 153, #1
- 4. pg. 153, #2
- 5. pg. 153, #3
- 6. pg. 153, #4
- 7. Consider the following differential equation

$$\dot{x} = f(x),$$

where $f : \mathbb{R} \to \mathbb{R}$ is a differentiable function satisfying f(0) = f(1) = 0 and f(x) > 0 for $x \in (0, 1)$. Determine $\Gamma(x)$ and $\omega(x)$ if $x \in [0, 1]$.

- 8. Denote by $d(x, A) = \inf_{y \in A} |x y|$ the distance between a point $x \in \mathbb{R}^n$ and a set $A \subset \mathbb{R}^n$.
 - (a) Show that $|d(x, A) d(z, A)| \le |x z|$.
 - (b) Prove that the mapping $x \mapsto d(x, A)$ is a continuous mapping from \mathbb{R}^n to \mathbb{R} .
- 9. For a function $g \in C^2(\mathbb{R}^2; \mathbb{R})$, consider the equation

$$\dot{x} = -\nabla g(x).$$

- (a) Show that if u is a nonconstant solution, then $g \circ u$ is strictly decreasing.
- (b) Show this system has no periodic orbits.
- (c) For the function $g(x, y) = x^2 y^4$ sketch the level sets of g(x, y) overlaid on top of a phase portrait. What geometric condition must hold between the level sets and the orbits?
- 10. Consider the following equation in polar coordinates:

$$\dot{r} = f(r),$$

 $\dot{\theta} = 1.$

where

$$f(r) = \begin{cases} r \sin(1/r^2), & r \neq 0\\ 0, & r = 0 \end{cases}.$$

Show that the origin is Lyapunov stable but not asymptotically stable.