MTH 357/657
 Homework \#6

Due Date: March 02, 2023

1 Moment Generating Functions

2 1.) Given that X has the probability distribution $f(x)=\frac{1}{8}\binom{3}{x}$ for $x=0,1,2$, and 3 , find the moment-generating function of this random variable and use it to determine μ_{1}^{\prime} and μ_{2}^{\prime}.
2. Find μ, μ_{2}^{\prime}, and σ^{2} for the random variable X that has the probability distribution $f(x)=1 / 2$ for $x=-2$ and $x=2$.
2. ff the random variable X has the mean μ and the standard deviation σ, show that the random variable

$$
Z=\frac{X-\mu}{\sigma}
$$

satisfies

$$
\mathbb{E}(Z)=0 \text { and } \mathbb{E}\left(Z^{2}\right)=1 .
$$

4. The symmetry or skewness (lack of symmetry) of a distribution is often measured by means of the quantity

$$
\alpha_{3}=\frac{\mu_{3}}{\sigma^{3}} .
$$

Draw histograms and calculate α_{3} for probability distributions $f(x)$ and $g(x)$ satisfying
(a) $f(1)=.05, f(2)=.15, f(3)=.30, f(4)=.30, f(5)=.15$, and $f(6)=.05$;
(b) $g(1)=.05, g(2)=.20, g(3)=.15, g(4)=.45, g(5)=.10$, and $g(6)=.05$.

The first distribution is symmetrical while the second has a "tail" on the left-hand side and is said to be negatively skewed.

The extent to which a distribution is peaked or flat, also called the kurtosis of the distribution, is often measured by means of the quantity

$$
\alpha_{4}=\frac{\mu_{4}}{\sigma^{4}} .
$$

Draw histograms and calculate α_{4} for probability distributions $f(x)$ and $g(x)$ satisfying
(a) $f(-3)=.06, f(-2)=.09, f(-1)=.10, f(0)=.5, f(1)=.10, f(2)=.09$, and $f(3)=.06$.
(b) $f(-3)=.04, f(-2)-.11, f(-1)=.20, f(0)=.30, f(1)=.20, f(2)=.11$, and $f(3)=.04$.

2 6. Find the moment

$$
f(x)=2\left(\frac{1}{3}\right)^{x} \text { for } x=1,2,3, \ldots
$$

and use it to determine the values of μ_{1}^{\prime} and μ_{2}^{\prime}.

2 Tchebysheff's Theorem

2 . What is the smallest value of k in Tchebysheff's theorem for which the probability that random variable will take on a value between $\mu-k \sigma$ and $\mu+k \sigma$ is
(a) at least .95;
(b) at least . 99 .
2. If we let $k \sigma=c$ in Tchebysheff's theorem, what does this theorem assert about the probability that a random variable will take on a value between $\mu-c$ and $\mu+c$.
3. The number of marriage licenses issued in a certain city during the month of June may be looked upon as a random variable with $\mu=124$ and $\sigma=7.5$. According to Tchebysheff's theorem, with what probability can we assert that between 64 and 184 marriage licenses will be issued during the month of June.

Homewonis \#6
\#
Given that $f(x)=\frac{1}{8}\binom{3}{x}$ for $x=0,1,2$, and 3, find the moment generating function of this random variable and use it to determine μ_{1}^{\prime} and μ_{2}^{\prime}.

Solution:

$$
\begin{aligned}
m(t)=\mathbb{E}\left[e^{* x}\right] & =\frac{1}{8}\left(\binom{3}{0} e^{0}+\binom{3}{1} e^{t}+\binom{3}{2} e^{2 t}+\binom{3}{3} e^{3 t}\right) \\
& =\frac{1}{8}\left(1+3 e^{t}+3 e^{2 t}+e^{3 t}\right) \\
& =\frac{1}{8}\left(1+e^{t}\right)^{3}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& m^{\prime}(t)=\frac{3}{8}\left(1+e^{t}\right)^{2} e^{t} \\
& m^{\prime \prime}(t)=\frac{6}{8}\left(1+e^{*}\right) e^{2 t}+\frac{3}{8}\left(1+e^{*}\right)^{2} e^{t}
\end{aligned}
$$

and thus

$$
\begin{aligned}
& m^{\prime}(0)=N_{1}^{\prime}=12 / 8=3 / 2 \\
& m^{\prime \prime}(0)=\mu_{2}^{\prime}=6 / 8 \cdot 2+3 / 8 \cdot 4=24 / 8=3
\end{aligned}
$$

\#3.
If the random variable X has the mean N and standard deviation $\sigma_{\text {; }}$ show that the random variable

$$
z=\frac{z-\mu}{\sigma}
$$

Satisfies

$$
\mathbb{E}[Z]=0 \text { and } \mathbb{E}\left[Z^{2}\right]=1 \text {. }
$$

Solution;

$$
\begin{aligned}
& \mathbb{E}[Z]=\mathbb{E}[(\mathbb{X}-\mu) / \sigma] \\
&=\frac{1}{\sigma}(\mathbb{E}[Z]-\mathbb{E}[\mu]) \\
&=\frac{1}{\sigma}(N-\mu)=0 \\
& \begin{aligned}
\mathbb{E}\left[Z^{2}\right]-\mathbb{E}[Z]^{2} & =\mathbb{E}\left[Z^{2}\right] \\
& =\mathbb{E}\left[(X-\omega)^{2} / \sigma^{2}\right] \\
& =\frac{1}{\sigma^{2}} \mathbb{E}\left[(X-\mu)^{2}\right] \\
& =\frac{1}{\sigma^{2}} \sigma^{2} \\
& =1 .
\end{aligned}
\end{aligned}
$$

\#4.
The symmetry of skewness of a distribution is often measured by means of the quantity

$$
\alpha_{3}=\frac{\mu_{3}}{\alpha^{3}} .
$$

Draw histograms and calculate α_{3} for probability distributions $f(x)$ and $g(x)$ satisfying
(a) $f(1)=.05, f(2)=.15, f(3)=.30, f(4)=, 30, f(5)=15$, and $f(6)=.05 ;$
(b) $g(1)=.05, g(2)=.20, g(3)=15, g(4)=.45, g(5)=.10$ and $g(6)=.05$.

Solution:
(a) $f(x)$ 个

Calculating, we have that

$$
\begin{aligned}
& N_{1}^{\prime}=.05+2 \cdot .15+3 \cdot 30+4: 30+5 \cdot 15+6 \cdot .05=3.5 . \\
& N_{2}^{\prime}=.05+4 \cdot .15+9: 30+16 \cdot .30+25 \cdot .15+36: 05=13.7 .
\end{aligned}
$$

Thus $\sigma=\left(\omega_{+}^{\prime}-\nu_{1}^{\prime 2}\right)^{1 / 2}=1.20416$. Therefore,

$$
\begin{aligned}
\alpha_{3}= & \mathbb{E}\left(\left(\bar{\Sigma}-\nu_{1}^{\prime}\right)^{3}\right] \\
\sigma^{3} & {\left[(1-3.5)^{3}: 05+(2-3.5)^{3}: 15+(3-3.5)^{3}: 30+(4-3.5)^{3}: 30\right.} \\
& \left.+(5-3.5)^{3} \cdot 15+(6-3.5)^{3} \cdot 05\right] /(1.20416)^{3} \\
= & {\left[(-2.5)^{3}: 05+(-1.5)^{3} \cdot 15+(6.5)^{3}: 30+(.5)^{3} \cdot 30\right.} \\
& \left.\left.+(1.5)^{3} \cdot 15+(2.5)^{3}: 05\right)\right] /(1.20416)^{3} \\
= & 0 .
\end{aligned}
$$

$(b) g(x) \uparrow$
Calculating, we have that

$$
\begin{aligned}
& N_{1}^{\prime}=.05+2 \cdot .20+3 \cdot .15+4 \cdot .45+5 \cdot .10+6.05=3.5 \\
& N_{2}^{\prime}=.05+4 \cdot .20+9 \cdot .15+16 \cdot .45+2.5: 10+36.05=13.7
\end{aligned}
$$

Thus $\sigma=\left(N_{2}^{\prime}-\mu_{1}^{\prime 2}\right)^{1 / 2}=1.20416$. Furtheretione,

$$
\begin{aligned}
\mathbb{E}\left[\left(\Sigma=v_{1}^{i}\right)^{3}\right] & =-2.5^{3} \cdot 05-1.5^{3} \cdot 20-.5^{3} \cdot 15+.5^{3} \cdot 45+1.5^{3} \cdot 10+2.5^{3} \cdot 05 \\
& =-.10 \cdot 1.5^{3}+.5^{3} \cdot 30 \\
& =-.3
\end{aligned}
$$

Therefore,

$$
\alpha_{3}=\frac{v_{3}}{\sigma^{3}}=\frac{-.3}{1.2041 b^{3}}=-.171 \%
$$

茀重
Find the moment generating function of the discrete random variable Z that has the probability distribution

$$
f(x)=2(1 / 3)^{x} \text { for } x=1,2,3
$$

and use it to determine μ_{1}^{\prime} and ν_{2}^{\prime}.

Solution:

$$
\begin{aligned}
m(t) & =\mathbb{E}\left[e^{* x}\right] \\
& =\sum_{x=1}^{\infty} e^{x x} \cdot 2(1 / 3)^{x} \\
& =2 \sum_{x=1}^{\infty}\left(e^{x} / 3\right)^{x} \\
& =2 \sum_{x=0}^{\infty}\left(e^{x} / 3\right)^{x+1} \\
& =\frac{2 e^{*}}{3} \sum_{x=0}^{\infty}\left(e^{t} / 3\right)^{x} \\
& =\frac{2 e^{t}}{3} \frac{1}{1-e^{x} / 3} \\
& =\frac{2 e^{t}}{3-e^{t}}
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
m^{\prime}(t) & =\frac{\left(3-e^{*}\right) 2 e^{t}+2 e^{2 t}}{\left(3-e^{t}\right)^{2}} \\
& =\frac{6 e^{t}}{\left(3-e^{*}\right)^{2}} \\
m^{\prime}(t) & =\frac{\left(3-e^{*}\right)^{2} 6 e^{t}-6 e^{t} \cdot 2\left(3-e^{*}\right)\left(-e^{*}\right)}{\left(3-e^{*}\right)^{4}} \\
\Rightarrow N_{1}^{\prime} & =\frac{6}{4}=\frac{3}{2}, \quad \mu_{2}^{\prime}=\frac{4 \cdot 6+12 \cdot 2}{16}=\frac{24}{16}=\frac{3}{2}
\end{aligned}
$$

\#
What is the smallest value of K in Tenebysheff's theorem for which the random variable will take on a value between $\mu-k \sigma$ and $\mu+k \sigma$ is
(a) at least. 95;
(b) at least. 99 .

Solution:
(a) Since $P(|X-\mu| \geq K \sigma) \leq 1 / k^{2}$ we need

$$
\begin{aligned}
& 1 / k^{2}=.05=5 / 100 \\
\Rightarrow & k^{2}=100 / 5 \\
\Rightarrow & k=10 / \sqrt{5}=4.47 .
\end{aligned}
$$

(b) Likewise we need

$$
\begin{aligned}
1 / k^{2} & =.01=1 / 100 \\
\Rightarrow & k=10 .
\end{aligned}
$$

