MTH 357/657
 Homework \#6

Due Date: March 17, 2023

1 Cumulative Distribution Functions

1. Find the cumulative distribution function for the discrete random variable that has the probability distribution function

$$
f(x)=\frac{x}{15},
$$

for $x=1,2,3,4,5$.
2. If X is a discrete random variable with the cumulative distribution function

$$
F(x)=\left\{\begin{array}{ll}
0 & \text { for } x<1 \\
1 / 3 & \text { for } 1 \leq x<4 \\
1 / 2 & \text { for } 4 \leq x<6 \\
5 / 6 & \text { for } 6 \leq x<10 \\
1 & \text { for } x \geq 10
\end{array} .\right.
$$

find
(a) $P(2<X \leq 6) ;$
(b) $P(X=4)$;
(c) the probability distribution of X.

2 3. The probability distribution of X, the weekly number of accidents at a certain intersection, is plotted below.

(a) Find the mean μ and the standard deviation σ for this distribution.
(b) Construct the cumulative distribution of X and draw its graph.
4. A coin is biased so that heads is twice as likely as tails. For three independent tosses of the coin, let X denote the total number of heads.
(a) Find the probability distribution of X and plot its graph.
(b) Find the cumulative distribution of X and plot its graph.
(c) Find $P(1<X \leq 3)$ and $P(X>2)$.

2 Continuous Random Variables

1. The probability density of the continuous random variable X is given by

$$
f(x)= \begin{cases}\frac{1}{5} & \text { for } 2<x<7 \\ 0 & \text { elsewhere }\end{cases}
$$

(a) Draw its graph and verify that the total area under the curve is equal to 1.
(b) Find the probability distribution function of the random variable X.
(c) Find $P(3<X<5)$.
2. (a) Show that

$$
f(x)=3 x^{2} \text { for } 0<x<1
$$

represents a probability density function.
(b) Sketch a graph of this function and indicate the area associated with $0.1<x<0.5$.
(c) Calculate the probability that $0.1<x<.5$.
3. (a) Show that

$$
f(x)=e^{-x} \text { for } 0<x<\infty
$$

represents a probability density function.
(b) Sketch a graph of this function and indicate the area associated with the probability that $x>1$.
(c) Calculate the probability that $x>1$.

2 4. The probability density function of the random variable X is given by

$$
f(x)= \begin{cases}\frac{c}{\sqrt{x}} & \text { for } 0<x<4 \\ 0 & \text { elsewhere }\end{cases}
$$

Find
(a) the value of c;
(b) $P(X<1 / 4)$ and $P(X>1)$;
(c) the cumulative distribution of this random variable.
5. The probability density of the random variable Z is given by

$$
f(z)= \begin{cases}k z e^{-z^{2}} & \text { for } z>0 \\ 0 & \text { elsewhere }\end{cases}
$$

(a) Find k and draw the graph of this probability density.
(b) Find the cumulative distribution function of Z and draw its graph.

2 6. The total lifetime (in years) of five-year-old dogs of a certain breed is a random variable whose cumulative distribution function is given by

$$
F(x)=\left\{\begin{array}{ll}
0 & \text { for } x \leq 5 \\
1-\frac{25}{x^{2}} & \text { for } x>5
\end{array} .\right.
$$

(a) Find the probabilty that such a five-year-old dog will live beyond 5 years.
(b) Find the probability that such a five-year-old dog will live less than eight years.
(c) Find the probability that such a five-year-old dog will live anywhere from 12 to 15 years.
(d) Find the probability density of this random variable.

3 Expected Values for Continuous Random Variables

2 1. If Y is a continuous random variable with density function $f(y)$, prove that

$$
\sigma^{2}=\mathbb{V}[Y]=\mathbb{E}\left[Y^{2}\right]-\mathbb{E}[Y]^{2} .
$$

2. If Y is a continuous random variable with density function $f(y)$, mean μ, and variance σ^{2} and a and b are constants prove that
(a) $\mathbb{E}(a Y+b)=a \mu+b$.
(b) $\mathbb{V}(a Y+b)=a^{2} \sigma^{2}$.
3. The proportion of time per day that all checkout counters in a supermarket are busy is a random variable Y with density function

$$
f(y)=\left\{\begin{array}{lc}
c y^{2}(1-y)^{4}, & 0 \leq y \leq 1 \\
0, & \text { elsewhere }
\end{array}\right.
$$

(a) Find the value of c that makes $f(y)$ a probability density function.
(b) Find $\mathbb{E}(Y)$.
4. Weekly CPU time used by an accounting firm has probability density function (measured in
2. hours) given by

$$
f(y)= \begin{cases}\frac{3}{64} y^{2}(4-y), & 0 \leq y \leq 4 \\ 0, & \text { elsewhere }\end{cases}
$$

(a) Find the expected value and variance of weekly CPU time.
(b) The CPU time costs the firm $\$ 200$ per hour. Find the expected value and variance of the weekly cost for CPU time.
(c) Would you expect the weekly cost to exceed $\$ 600$ very often? Why?

Homework \#2
来3.
The probability distribution of Z, the weekly number of accidents at a certain intersection is plotted below

(a) Find the mean N and the standard deviation F for this distribution.
(b) Construct the cummelative distribution of \bar{I} and draw its graph.

Solution:
(a) $\mathbb{E}[X]=N=.4 \cdot 0+.3 \cdot 1+.2 \cdot 2+1 \cdot 3=.8$. Additionuls $\mathbb{E}\left[X^{2}\right]=.4 \cdot 0+1 \cdot 3+4 \cdot 2+9 \cdot 1=1.6$. Therefore, $\sigma^{2}=\mathbb{E}\left[\mathbb{X}^{2}\right]-\mathbb{E}[\mathbb{X}]^{2}=1.1-.64=.96$

$$
\Rightarrow \sigma=.98 .
$$

(b). $F(x)=\left\{\begin{array}{cc}0, & x \leq 0 \\ 4, & 0<x \leq 1 \\ 7, & 1<x \leq 2 \\ 9, & 2<x \leq 3 \\ 1, & 3<x\end{array}\right.$

\#4.
The probability density function of the randier variable X is given by

$$
f(x)=\left\{\begin{array}{cl}
c x^{-1 / 2}, & 0<x<4 \\
0, & \text { e.w. }
\end{array}\right.
$$

Find
(a) The value of c
(b) $P(X<1 / 4)$ and $P(X>1)$
(c) The cumulative distribution of this random variable

Solution:
(a) We know that $\int_{-\infty}^{\infty} f(x) d x=1$ and thus $\int_{0}^{4} c x^{-1 / 2} d x=\left.2 c x^{1 / 4}\right|_{0} ^{4}=1$
(b)

$$
\begin{aligned}
& \text { implying } c=1 / 4 . \\
& P(X<1 / 4)=\int_{0}^{1 / 4} \frac{1}{4} x^{-1 / 2} d x=\left.\frac{1}{2} x^{1 / 2}\right|_{0} ^{1 / 4}=1 / 4 \\
& P(\bar{X}>1)=\int_{1}^{4} \frac{1}{4} x^{-1 / 2} d x=\left.\frac{1}{2} x^{1 / 2}\right|_{1} ^{4}=1-1 / 2=1 / 2
\end{aligned}
$$

(c) The cumulative distribution is given by

$$
\begin{aligned}
F(x) & =\int_{-\infty}^{x} f(x) d x \\
& =\left\{\begin{array}{cc}
0, & x \leq 0 \\
1 / 2 x^{1 / 2}, & 0 \leq x \leq 4 \\
1, & 4 \leq x
\end{array}\right.
\end{aligned}
$$

which has the following graph.

\#6
The total lifetime of fine-year-sld dogs of a certain breed is a random variable whose cumulative distribution function is given by

$$
F(x)=\left\{\begin{array}{c}
0, \quad x \leq 5 \\
1-25 x, x>5
\end{array}\right.
$$

(a). Find the probability that such a five-year-old dey will live beyond 5 years.
(b) Find the probability that such a five-gear-old will live less than eight years.
(c) Find the probability that such a firesyear-oled dey will live anywhere from 12 to 15 -years.
(d) Find the probability density of this random variable.

Solution'
(a) $P(\bar{X}>5)=F(\infty)-F(5)=F(\infty)-0=1$.
(b) $P(X<8)=F(8)=1-25 / 64=39 / 64$.
(c). $P(12<Z<15)=F(15)-F(12)=25 / 144-25 / 15^{2}=1 / 16$.
(d) $p(x)=\frac{d F}{d x}$

$$
=\left\{\begin{array}{cc}
0, & x \leq 5 \\
50 / x^{3}, & x>5
\end{array}\right.
$$

\#
If I is a continuous random variable with density function $f(y)$, prove that

$$
\sigma^{2}=\mathbb{V}[Y]=\mathbb{E}\left[Y^{2}\right]-\mathbb{E}[Y]^{2}
$$

pace:

$$
\begin{aligned}
& \mathscr{W}[\bar{Y}]=\mathbb{\mathbb { E }}\left[(\bar{X}-N)^{2}\right] \\
& =\int_{-\infty}^{\infty}(x-N)^{2} f(x) d x \\
& =\int_{-\infty}^{\infty-\infty}\left(x^{2}-2 \mu x+N^{2}\right) f(x) d x \\
& =\int_{-\infty}^{\infty} x^{2} f(x) d x-2 \mu \int_{-\infty}^{\infty} x f(x) d x+\mu^{2} \int_{-\infty}^{\infty} f(x) d x \\
& =\mathbb{E}\left[Y^{2}\right]-2 N \mathbb{E}[Y]+N^{2} . \\
& =\mathbb{E}\left[Y^{2}\right]-N^{2} \\
& =\mathbb{E}\left[Y^{\prime}\right]-\mathbb{E}\left[Y^{\prime}\right]^{2}
\end{aligned}
$$

井 4
Weekly CPU time used by an accounting firm has the probability density function (mensural in hovers) given by

$$
f(y)=\left\{\begin{array}{cc}
\frac{3}{64} y^{2}(4-y), & 0 \leq y \leq 4 \\
0, & \text { e.w. }
\end{array}\right.
$$

(a) Find the expected time and variance of weekly cpu time.
(b) The CPU time costs the firm 5200.00 per hour. Find the exjecctad valve and variance of the weekly coset for CPU time.
(c) Would you expect the weekly cost to exceed $\$ 600.00$ Very often? Why?

Solution:
(a) Calculating we have that

$$
\begin{aligned}
& \text { culatiy me have that } \\
& \mathbb{E}[Y]=\int_{0}^{4} 3 / 64 y^{3}(4-y) d y=\frac{3}{64} \int_{0}^{4}\left(4 y^{3}-y^{4}\right)=\left.\frac{3}{64}\left(y^{4}-y^{5} / 5\right)\right|_{0} ^{4}=12 / 5=2.4 \\
& \left.\mathbb{E}\left[Y^{2}\right]=\int_{0}^{4} 3 / 64 y^{4}(4-y) d y=3 / 64\right]_{0}^{4}\left(4 y^{4}-y^{5}\right) d y=\left.\frac{3}{64}\left(\frac{4}{5} y^{5}-y^{6} / 6\right)\right|_{0} ^{4}=32 / 5
\end{aligned}
$$

Consequently

$$
\mu=12 / 5, \sigma^{4}=32 / 5-144 / 25=16 / 25 \text {. }
$$

(b). Let $X=200.7$ denote the cost. Therefore,

$$
\begin{aligned}
& \mathbb{E}[\mathbb{Z}]=200 \cdot \mathbb{E}[I]=200 \cdot 12 / 5=480 \\
& \mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\mathbb{E}\left[200^{2} I^{2}\right]-200^{2} \mathbb{E}[X]^{2}=200^{2} \sigma^{2}=200^{2} \cdot 16 / 25
\end{aligned}
$$

Therefore, the standard deviation for the cost is given by

$$
\nabla_{c}=200 \cdot 4 / s=\$ 160.00 .
$$

(c). We need to compote $P(Y \geq 3)$ which is given by

$$
\begin{aligned}
& P(Z \geq 3)=\int_{3}^{4} \frac{3}{64}\left(4 y^{2}-y^{3}\right) d y=\left.\frac{3}{64}\left(\frac{4}{3} y^{3}-\frac{1}{4} y^{4}\right)\right|_{3} ^{4} \\
& \Rightarrow P(Y \geq 3)=\frac{3}{64}\left(\frac{4}{3} \cdot 4^{3}-\frac{1}{4} \cdot 4^{4}-\frac{4}{3} \cdot 3^{3}+\frac{1}{4} 3^{4}\right)=6 \frac{1}{256} \approx .26
\end{aligned}
$$

Consequently, we expect to exceed $\$ 600.00$ about 25% of the time.

