MTH 357/657
 Homework \#9

Due Date: April 07, 2023

1 Discrete Multivariate Distributions

1. The joint probability distribution $p(x, y)$ of random random variables X and Y satisfies

$$
\begin{aligned}
& p(0,0)=\frac{1}{12}, p(1,0)=\frac{1}{6}, p(2,0)=\frac{1}{24}, \\
& p(0,1)=\frac{1}{4}, p(1,1)=\frac{1}{4}, p(2,1)=\frac{1}{40}, \\
& p(0,2)=\frac{1}{8}, p(1,2)=\frac{1}{20}, \\
& p(0,3)=\frac{1}{120} .
\end{aligned}
$$

(a) Find the following values:
i. $P(X=1, Y=2)$
ii. $P(X=0,1 \leq Y<3)$
iii. $P(X+Y \leq 1)$
iv. $P(X>Y)$
(b) If $F(x, y)$ denotes the joint cumulative distribution function for this probability distribution, find the following values:
i. $F(1.2, .9)$
ii. $F(-3,1.5)$
iii. $F(2,0)$
iv. $F(4,2.7)$
2. Suppose the joint probability distribution function of X and Y is given by

$$
f(x, y)=c\left(x^{2}+y^{2}\right)
$$

for $x=-1,0,1,3$ and $y=-1,2,3$ and zero otherwise.
(a) Find the value of c.
(b) Compute $P(X \leq 1, Y>2)$
(c) Compute $P(X=0, Y \leq 2)$
(d) Compute $P(X+Y>2)$
3. Show that there is no value of k for which

$$
f(x, y)=k y(2 y-x), \text { for } x=0,1,2,3 \text { and } y=0,1,2
$$

can serve as the joint probability distribution of two random variables.

2 Continuous Multivariate Distributions

1. If a radioactive particle is randomly located in a square of unit length, with coordinates (X, Y) selected randomly. A reasonable model for the joint density probability function for its X and Y is

$$
f(x, y)= \begin{cases}1 & 0 \leq x \leq 1,0 \leq y \leq 1 \\ 0 & \text { elsewhere }\end{cases}
$$

(a) What is $P(X>.5, Y>.5)$?
(b) What is $P(X-Y>.5)$?
(c) What is $P(X Y<1 / 2)$?
(2.) Determine k so that

$$
p(x, y)= \begin{cases}k x(x-y) & 0<x<1,-x<y<x \\ 0 & \text { elsewhere }\end{cases}
$$

can serve as a joint probability density.
3. If the joint probability density of X and Y is given by

$$
p(x, y)= \begin{cases}24 x y & 0<x<1,0<y<1, x+y<1 \\ 0 & \text { elsewhere }\end{cases}
$$

find $P\left(X+Y<\frac{1}{2}\right)$.
(4.) If the joint probability density of X and Y is given by

$$
f(x, y)= \begin{cases}2 & \text { for } x>0, y>0, x+y<1 \\ 0 & \text { elsewhere }\end{cases}
$$

find
(a) $P\left(X \leq \frac{1}{2}, Y \leq \frac{1}{2}\right)$;
(b) $P\left(X+Y>\frac{2}{3}\right)$;
(c) $P(X>2 Y)$.
5. pg. 234, \#5.11.

3 Marginal and Conditional Distributions

1. With reference to problem \#1 in the "Discrete Multivariate Distributions" section of this assignment, find
(a) The marginal distribution of X;
(b) The marginal distribution of Y;
(c) The conditional distribution of X given $Y=1$;
(d) The conditional distribution of Y given $X=0$;
2. Check whether the discrete random variables X and Y are independent if their joint probability distribution $f(x, y)$ is given by
(a) $f(x, y)=1 / 4$ for $x=-1$ and $y=-1, x=-1$ and $y=1, x=1$ and $y=-1$, and $x=1$ and $y=1$;
(b) $f(x, y)=1 / 3$ for $x=0$ and $y=0, x=0$ and $y=1$, and $x=1$ and $y=1$.
3. If the joint probability density of X and Y is given by

$$
f(x, y)= \begin{cases}\frac{1}{4}(2 x+y) & \text { for } 0<x<1,0<y<2 \\ 0 & \text { elsewhere }\end{cases}
$$

find
(a) the marginal density of X;
(b) the conditional density of Y given $X=1 / 4$;
(c) the marginal density of Y;
(d) the conditional density of X given $Y=1$.
4. If the independent random variables X and Y have the marginal densities

$$
\begin{aligned}
& f(x)= \begin{cases}\frac{1}{2} & \text { for } 0<x<2 \\
0 & \text { elsewhere }\end{cases} \\
& g(y)=\left\{\begin{array}{cc}
\frac{1}{3} & \text { for } 0<y<3 \\
0 & \text { elsewhere }
\end{array}\right.
\end{aligned}
$$

(a) Find the joint probability density of X and Y.
(b) Find $P\left(X^{2}+Y^{2}>1\right)$.
5. Suppose the joint density of X and Y is given by

$$
f(x, y)= \begin{cases}\frac{1}{y} & \text { for } 0<x<y, 0<y<1 \\ 0 & \text { elsewhere }\end{cases}
$$

(a) Find the probability that the sum of X and Y will exceed $1 / 2$.
(b) Find the marginal density of X.
(c) Find the marginal density of Y.
(d) Determine whether the two random variables are independent.
\#2
Suppese the jeint prabability distribution function of I and \bar{Y} is given by

$$
f(x, y)=c\left(x^{2}+y^{2}\right)
$$

for $x=-1,0,1,3$ and $y=-1,2,3$ and zero othenwise.
(a) Find the value of c
(b) Compote $P(X \leq 1, I>2)$
(c) Compute $P(X=0, \Psi \leq 2)$
(d) Compute $P(X+Y>2)$.

Selution:
(a)

$$
\begin{aligned}
\sum_{x} \sum_{y} c\left(x^{2}+y^{2}\right) & =c\left(\sum_{x} \sum_{y} x^{2}+\sum_{x} \sum_{y} y^{2}\right) \\
& =3 c \sum_{x} x^{2}+4 c \sum_{y} y^{2} \\
& =3 c(1+1+9)+4 c(1+4+9) \\
& =33 c+56 c \\
& =89 c .
\end{aligned}
$$

Thereforc, $c=1 / 89$.
(b)

$$
\begin{aligned}
P(X \leq 1, Y>2) & =1 / 89\left(\sum_{x \leq 1} \sum_{y>2} x^{2}+\sum_{x=1} \sum_{y>2} y^{2}\right) \\
& =1 / 89\left(\sum_{x \leq 1} x^{2}+3 \sum_{y>2} y^{2}\right) \\
& =1 / 89(1+1+3 \cdot 9) \\
& =29 / 89 .
\end{aligned}
$$

$$
\text { (c) } \begin{aligned}
P(X=0, Y \leq 2) & =1 / 89\left(\sum_{y=2} y^{2}\right) \\
& =1 / 89(1+4) \\
& =5 / 8 q
\end{aligned}
$$

(d)

$$
\begin{aligned}
P(X+Y>2) & =1 / 89\left(\sum_{x} \sum_{y>2-x} x^{2}+y^{2}\right) \\
& =1 / 89\left(\sum_{y>3}\left(1+y^{2}\right)+\sum_{y>2}\left(0+y^{2}\right)+\sum_{y>1}\left(1+y^{2}\right)+\sum_{y>-1}\left(9+y^{2}\right)\right) \\
& =1 / 89(0+10+9)+(1+4)+(1+9)+(9+4)+(9+9)) \\
& =1 / 89(5 \cdot 9+2 \cdot 1+2 \cdot 4) \\
& =1 / 89(45+2+8) \\
& =55 / 89 .
\end{aligned}
$$

\#2
Determine k so that

$$
p(x, y)=\left\{\begin{array}{cl}
k x(x-y), & 0 \leq x \leq 1,-x<y<x \\
0, & \text { elsewhere }
\end{array}\right.
$$

can serve as a joint probability density.
Solution:

$$
\begin{aligned}
P(Z+Y>2 / 3) & =\int_{0}^{9 / 5} \int_{2 / 3}^{1-x} 2 d y d x+\int_{2 / 3}^{1} \int_{0}^{1-x} 2 d y d x \\
& =2 \int_{0}^{2 / 3}(1-x-2 / 3+x) d x+2 \int_{2 / 1}^{1} 1-x d x \\
& =2 \int_{0}^{2 / 3} 1 / 3 d x+2 \int_{3 / 2}^{1}(1-x) d x \\
& =2 \frac{2}{9}+\left.2\left(x-x^{2} / 2\right)\right|_{2 / 3} ^{1} \\
& =4 / 9+2(1-1 / 2-2 / 3+4 / 18) \\
& =4 / 9+2-1-4 / 3+4 / 9 \\
& =5 / 9-1 / 3 \\
& =5 / 9
\end{aligned}
$$

(c)

The area if the triangle is $1 / 6$ and thess

$$
P(X \geq 2 I)=\iint_{A} 2 d y d x=2 \iint_{A} d y d x=1 / 3 .
$$

Integrating we have that

$$
\begin{aligned}
& \int_{0}^{1} \int_{-x}^{x} k x(x-y) d y d x=1 \\
\Rightarrow & \left.\int_{0}^{1} k x^{2} y-x y / 2\right)\left.\right|_{-x} ^{x} d x=1 \\
\Rightarrow & \int_{0}^{1} 2 k x^{3} d x=1 \quad \frac{2 x^{4}}{4} \quad 1 / 2 k=1 \quad k=1 \\
\Rightarrow & 2 / 3 k=1 \\
\Rightarrow & k=3 / 2 . k=2 ?
\end{aligned}
$$

\#4.
If the joint probability density of X and Ψ is given by

$$
f(x, y)=\left\{\begin{array}{lc}
2 & x>0, y>0, x+y<1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

find
(a) $P(X \leq 1 / 2, \bar{X} \leq 1 / 2)$
(b) $P(X+Y>2 / 3)$
(c) $P(X>2 耳)$

井3.
If the joint probability density of \bar{Z} and I is given by

$$
p(x, y)=\left\{\begin{array}{cl}
1 / 4(2 x+y), & 0<x<1, \\
0, & \text { elsewhere }
\end{array}\right.
$$

find
(a) The marginal density of \bar{X};
(b) The conditional density of Y given $X=1 / 4$;
(c) The marginal donsiy of $P^{\text {; }}$;
(d) The conditional density of Z given $I=1$.

Solution:
(a)

$$
\begin{array}{rlr}
f(x) & =\int_{-\infty}^{\infty} p(x, y) d y & \\
& =\int_{6}^{2} 1 / 4(2 x+y) d y, & \text { if } 0<x<1 \\
& =1 /\left.4\left(2 x y+\frac{1}{2} y^{2}\right)\right|_{0} ^{2}, & \text { if } 0<x<1 \\
& =1 / 4(4 x+2), & \text { if } 0<x<1 \\
\Rightarrow f(x) & =\left\{\begin{array}{cl}
1 / 4(4 x+2), & \\
0<x<1 \\
0, & 0 . w .
\end{array}\right.
\end{array}
$$

(b)

$$
\begin{aligned}
& f(y \mid x=1)=\frac{p(x 1 / 4)}{f(1 / 4)}=\frac{p(x, y / 4)}{3 / 4} \\
& \Rightarrow f\left(y \mid x=y_{1}\right)=\left\{\begin{array}{c}
\frac{1 / 4(1 / 2+y)}{3 / 4}, 0<y<2 \\
0, \text { elsewhere }
\end{array}\right. \\
& =\left\{\begin{array}{cc}
1 / 6+y / 3 & , 0<y<2 \\
0, & \text { elsewhere. }
\end{array}\right.
\end{aligned}
$$

\# 4.
If the independent random variables X, I have marginal densities

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{cc}
1 / 2 & 0<x<2 \\
0 & \text { elsewhere }
\end{array}\right. \\
& g(y)=\left\{\begin{array}{cc}
1 / 3 & 0<y<3 \\
0 & \text { elsewhere }
\end{array}\right.
\end{aligned}
$$

(a) Find the joint probability density of X and I.
(b) Find $P\left(X^{2}+I^{2}>1\right)$.

Solution:
(a) Since X, I are independent it follows that

$$
\begin{aligned}
p(x, y) & =f(x) y(y) \\
& =\left\{\begin{array}{l}
1 / 6,0<x<2,0<y<3 \\
0, \\
\text { elsewhere. }
\end{array}\right.
\end{aligned}
$$

(b)

$$
P\left(\bar{S}^{2}+Y^{2}>1\right)=\iint_{A} p(x, y) d y d x=1 / 6 \iint_{A} d y d x=\left(6-\frac{\pi}{4}\right) / 6=1-\pi / 6 \cdot 24
$$

