MTH 357/657
 Homework \#10

Due Date: April 14, 2023

1 Covariance

1. The joint probability distribution $p(x, y)$ of random random variables X and Y satisfies

$$
\begin{aligned}
& p(0,0)=\frac{1}{12}, p(1,0)=\frac{1}{6}, p(2,0)=\frac{1}{24} \\
& p(0,1)=\frac{1}{4}, p(1,1)=\frac{1}{4}, p(2,1)=\frac{1}{40} \\
& p(0,2)=\frac{1}{8}, p(1,2)=\frac{1}{20} \\
& p(0,3)=\frac{1}{120} .
\end{aligned}
$$

Find $\operatorname{Cov}(X, Y)$.
2. If the joint probability density of X and Y is given by

$$
f(x, y)= \begin{cases}\frac{1}{4}(2 x+y) & \text { for } 0<x<1,0<y<2 \\ 0 & \text { elsewhere }\end{cases}
$$

find $\operatorname{Cov}(X, Y)$.
3. Suppose X, Y are discrete random variables with joint probability distribution $p(x, y)$ satisfying $p(-1,1)=1 / 4, p(0,0)=1 / 6, p(1,0)=1 / 12, p(1,1)=1 / 2$ and is zero for all other values. Show that
(a) $\operatorname{Cov}(X, Y)=0$
(b) The two random variables are not independent.
4. Suppose the probability density of X is given by

$$
f(x)= \begin{cases}1+x & -1<x \leq 0 \\ 1-x & 0<x<1 \\ - & \text { elsewhere }\end{cases}
$$

and $U=X$ and $V=X^{2}$. Show that
(a) $\operatorname{Cov}(U, V)=0$
(b) U and V are dependent.
5. If X_{1}, X_{2}, X_{3} are independent and have the means 4,9 , and 3 and the variances 3,7 , and 5 , find the mean and the variance of
(a) $Y=2 X_{1}-3 X_{2}+4 X_{3}$,
(b) $Z=X_{1}+2 X_{2}-X_{3}$.
6. If the joint probability density of X and Y is given by

$$
p(x, y)= \begin{cases}\frac{1}{3}(x+y) & \text { for } 0<x<1,0<y<2 \\ 0 & \text { elsewhere }\end{cases}
$$

find the variance of $W=3 X+4 Y-5$.
7. A quarter is bent so that probabilities of heads and tails are .40 and .60 . If is tossed twice, what is the covariance of Z, the number of heads obtained on the first toss, and W the total number of heads obtained in the two tosses of the coin?
8. The inside diameter of a cylindrical tube is a random variable with a mean of 3 inches and a standard deviation of .02 inch, the thickness of the tube is a random variable with a mean of .3 inch and a standard deviation of .005 inch, and the two random variables are independent. Find the mean and the standard deviation of the outside diameter of the tube.

2 Conditional Expectation

1. With reference to problem \#1 from the "Covariance" section, find the conditional mean and the conditional variance of X given $Y=1$.
2. With reference to problem \#2 from the "Covariance" section, find the conditional mean and the conditional variance of Y given $X=1 / 4$.
