MTH 357/657
 Homework \#6

Due Date: March 03, 2023

1 Moment Generating Functions

1. Given that X has the probability distribution $f(x)=\frac{1}{8}\binom{3}{x}$ for $x=0,1,2$, and 3, find the moment-generating function of this random variable and use it to determine μ_{1}^{\prime} and μ_{2}^{\prime}.
2. Find μ, μ_{2}^{\prime}, and σ^{2} for the random variable X that has the probability distribution $f(x)=1 / 2$ for $x=-2$ and $x=2$.
3. If the random variable X has the mean μ and the standard deviation σ, show that the random variable

$$
Z=\frac{X-\mu}{\sigma}
$$

satisfies

$$
\mathbb{E}(Z)=0 \text { and } \mathbb{E}\left(Z^{2}\right)=1 .
$$

4. The symmetry or skewness (lack of symmetry) of a distribution is often measured by means of the quantity

$$
\alpha_{3}=\frac{\mu_{3}}{\sigma^{3}} .
$$

Draw histograms and calculate α_{3} for probability distributions $f(x)$ and $g(x)$ satisfying
(a) $f(1)=.05, f(2)=.15, f(3)=.30, f(4)=.30, f(5)=.15$, and $f(6)=.05$;
(b) $g(1)=.05, g(2)=.20, g(3)=.15, g(4)=.45, g(5)=.10$, and $g(6)=.05$.

The first distribution is symmetrical while the second has a "tail" on the left-hand side and is said to be negatively skewed.
5. The extent to which a distribution is peaked or flat, also called the kurtosis of the distribution, is often measured by means of the quantity

$$
\alpha_{4}=\frac{\mu_{4}}{\sigma^{4}} .
$$

Draw histograms and calculate α_{4} for probability distributions $f(x)$ and $g(x)$ satisfying
(a) $f(-3)=.06, f(-2)=.09, f(-1)=.10, f(0)=.5, f(1)=.10, f(2)=.09$, and $f(3)=.06$.
(b) $f(-3)=.04, f(-2)-.11, f(-1)=.20, f(0)=.30, f(1)=.20, f(2)=.11$, and $f(3)=.04$.
6. Find the moment generating function of the discrete random variable X that has the probability distribution

$$
f(x)=2\left(\frac{1}{3}\right)^{x} \text { for } x=1,2,3, \ldots
$$

and use it to determine the values of μ_{1}^{\prime} and μ_{2}^{\prime}.

2 Tchebysheff's Theorem

1. What is the smallest value of k in Tchebysheff's theorem for which the probability that random variable will take on a value between $\mu-k \sigma$ and $\mu+k \sigma$ is
(a) at least .95 ;
(b) at least .99.
2. If we let $k \sigma=c$ in Tchebysheff's theorem, what does this theorem assert about the probability that a random variable will take on a value between $\mu-c$ and $\mu+c$.
3. The number of marriage licenses issued in a certain city during the month of June may be looked upon as a random variable with $\mu=124$ and $\sigma=7.5$. According to Tchebysheff's theorem, with what probability can we assert that between 64 and 184 marriage licenses will be issued during the month of June.
