MTH 357/657
 Homework \#6

Due Date: March 17, 2023

1 Cumulative Distribution Functions

1. Find the cumulative distribution function for the discrete random variable that has the probability distribution function

$$
f(x)=\frac{x}{15}
$$

for $x=1,2,3,4,5$.
2. If X is a discrete random variable with the cumulative distribution function

$$
F(x)=\left\{\begin{array}{ll}
0 & \text { for } x<1 \\
1 / 3 & \text { for } 1 \leq x<4 \\
1 / 2 & \text { for } 4 \leq x<6 \\
5 / 6 & \text { for } 6 \leq x<10 \\
1 & \text { for } x \geq 10
\end{array} .\right.
$$

find
(a) $P(2<X \leq 6)$;
(b) $P(X=4)$;
(c) the probability distribution of X.
3. The probability distribution of X, the weekly number of accidents at a certain intersection, is plotted below.

(a) Find the mean μ and the standard deviation σ for this distribution.
(b) Construct the cumulative distribution of X and draw its graph.
4. A coin is biased so that heads is twice as likely as tails. For three independent tosses of the coin, let X denote the total number of heads.
(a) Find the probability distribution of X and plot its graph.
(b) Find the cumulative distribution of X and plot its graph.
(c) Find $P(1<X \leq 3)$ and $P(X>2)$.

2 Continuous Random Variables

1. The probability density of the continuous random variable X is given by

$$
f(x)= \begin{cases}\frac{1}{5} & \text { for } 2<x<7 \\ 0 & \text { elsewhere }\end{cases}
$$

(a) Draw its graph and verify that the total area under the curve is equal to 1.
(b) Find the probability distribution function of the random variable X.
(c) Find $P(3<X<5)$.
2. (a) Show that

$$
f(x)=3 x^{2} \text { for } 0<x<1
$$

represents a probability density function.
(b) Sketch a graph of this function and indicate the area associated with $0.1<x<0.5$.
(c) Calculate the probability that $0.1<x<.5$.
3. (a) Show that

$$
f(x)=e^{-x} \text { for } 0<x<\infty
$$

represents a probability density function.
(b) Sketch a graph of this function and indicate the area associated with the probability that $x>1$.
(c) Calculate the probability that $x>1$.
4. The probability density function of the random variable X is given by

$$
f(x)= \begin{cases}\frac{c}{\sqrt{x}} & \text { for } 0<x<4 \\ 0 & \text { elsewhere }\end{cases}
$$

Find
(a) the value of c;
(b) $P(X<1 / 4)$ and $P(X>1)$;
(c) the cumulative distribution of this random variable.
5. The probability density of the random variable Z is given by

$$
f(z)= \begin{cases}k z e^{-z^{2}} & \text { for } z>0 \\ 0 & \text { elsewhere }\end{cases}
$$

(a) Find k and draw the graph of this probability density.
(b) Find the cumulative distribution function of Z and draw its graph.
6. The total lifetime (in years) of five-year-old dogs of a certain breed is a random variable whose cumulative distribution function is given by

$$
F(x)= \begin{cases}0 & \text { for } x \leq 5 \\ 1-\frac{25}{x^{2}} & \text { for } x>5\end{cases}
$$

(a) Find the probabilty that such a five-year-old dog will live beyond 5 years.
(b) Find the probability that such a five-year-old dog will live less than eight years.
(c) Find the probability that such a five-year-old dog will live anywhere from 12 to 15 years.
(d) Find the probability density of this random variable.

3 Expected Values for Continuous Random Variables

1. If Y is a continuous random variable with density function $f(y)$, prove that

$$
\sigma^{2}=\mathbb{V}[Y]=\mathbb{E}\left[Y^{2}\right]-\mathbb{E}[Y]^{2}
$$

2. If Y is a continuous random variable with density function $f(y)$, mean μ, and variance σ^{2} and a and b are constants prove that
(a) $\mathbb{E}(a Y+b)=a \mu+b$.
(b) $\mathbb{V}(a Y+b)=a^{2} \sigma^{2}$.
3. The proportion of time per day that all checkout counters in a supermarket are busy is a random variable Y with density function

$$
f(y)=\left\{\begin{array}{lc}
c y^{2}(1-y)^{4}, & 0 \leq y \leq 1 \\
0, & \text { elsewhere }
\end{array}\right.
$$

(a) Find the value of c that makes $f(y)$ a probability density function.
(b) Find $\mathbb{E}(Y)$.
4. Weekly CPU time used by an accounting firm has probability density function (measured in hours) given by

$$
f(y)=\left\{\begin{array}{lc}
\frac{3}{64} y^{2}(4-y), & 0 \leq y \leq 4 \\
0, & \text { elsewhere }
\end{array}\right.
$$

(a) Find the expected value and variance of weekly CPU time.
(b) The CPU time costs the firm $\$ 200$ per hour. Find the expected value and variance of the weekly cost for CPU time.
(c) Would you expect the weekly cost to exceed $\$ 600$ very often? Why?

