MTH 357/657
 Homework \#8

Due Date: March 31, 2023

1 Moment Generating Functions

1. Suppose a and b are constants and X is a continuous random variable with moment generating function $m_{X}(t)$ and let $Y=X+a, Z=b X$, and $U=(X+a) / b$ be random variables with moment generating functions $m_{Y}(t), m_{Z}(t)$, and $m_{U}(t)$ respectively. Show that the following identities are true:
(a) $m_{Y}(t)=e^{a t} m_{X}(t)$,
(b) $m_{Z}(t)=m_{X}(b t)$,
(c) $m_{U}(t)=e^{a / b t} m_{X}(t / b)$.

2 Gamma Distributions

1. Find the probabilities that the value of a random variable will exceed 4 if it has a gamma distribution with
(a) $\alpha=2$ and $\beta=3$;
(b) $\alpha=3$ and $\beta=4$.
2. Show that a gamma distribution with $\alpha>1$ has a relative maximum at $x=\beta(\alpha-1)$. What happens when $0<\alpha<1$ and when $\alpha=1$?
3. Show that for $t<1 / \beta$ the moment generating function of the gamma distribution is given by

$$
m(t)=(1-\beta t)^{-\alpha}
$$

Hint: Make the substitution $u=x(1 / \beta-t)$ in the integral defining $m(t)$.
4. A random variable X has a Weibull distribution if and only if its probability density is given by

$$
p(x)= \begin{cases}k x^{\beta-1} e^{-\alpha x^{\beta}} & \text { for } x>0 \\ 0 & \text { for } x<0\end{cases}
$$

where $\alpha>0$ and $\beta>0$.
(a) Express k in terms of α and β.
(b) Show that

$$
\mu=\mathbb{E}[X]=\alpha^{-1 / \beta} \Gamma\left(1+\frac{1}{\beta}\right)
$$

5. If X is a random variable with an exponential distribution, i.e., a gamma distribution with $\alpha=1$, and $P(X>2)=.08$, determine the value of β and then compute $P(X \leq 1.5)$.
6. Suppose X is an exponential distribution with $\mu=\mathbb{E}[X]=10$. Find the mean and variance of the following random variable:

$$
C=100+40 X+3 X^{2}
$$

3 Beta Distributions

1. The percentage of impurities per batch in a chemical product is a random variable X with probability density function

$$
p(x)=\left\{\begin{array}{lc}
k x^{2}(1-x), & 0 \leq x \leq 1 \\
0, & \text { elsewhere }
\end{array}\right.
$$

A batch with more than 40% impurities cannot be sold.
(a) Find the value of k that makes this a probability density.
(b) Determine the probability that a randomly selected batch cannot be sold because of excessive impurities.
(c) Find the mean and variance of the of the percentage of impurities in a randomly selected batch of the chemical.
2. Prove that the variance of a beta-distributed random variable with parameters α and β is

$$
\sigma^{2}=\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}
$$

3. For $\alpha, \beta>1$, find the local maximum for the probability density function for the beta distribution in terms of α and β.

4 Normal Distribution

1. Show that a normal distribution has
(a) a relative maximum at $x=\mu$;
(b) inflection points at $x=\mu-\sigma$ and $x=\mu+\sigma$.
2. Assume that X is normally distributed with mean μ and standard deviation σ. After observing a value of X, a mathematician constructs a rectangle with length $L=|Y|$ and width $W=3|Y|$. If A denotes the area of the resulting rectangle, calculate $\mathbb{E}(A)$.
