MTH 357/657
 Homework \#9

Due Date: April 07, 2023

1 Discrete Multivariate Distributions

1. The joint probability distribution $p(x, y)$ of random random variables X and Y satisfies

$$
\begin{aligned}
& p(0,0)=\frac{1}{12}, p(1,0)=\frac{1}{6}, p(2,0)=\frac{1}{24} \\
& p(0,1)=\frac{1}{4}, p(1,1)=\frac{1}{4}, p(2,1)=\frac{1}{40} \\
& p(0,2)=\frac{1}{8}, p(1,2)=\frac{1}{20} \\
& p(0,3)=\frac{1}{120}
\end{aligned}
$$

(a) Find the following values:
i. $P(X=1, Y=2)$
ii. $P(X=0,1 \leq Y<3)$
iii. $P(X+Y \leq 1)$
iv. $P(X>Y)$
(b) If $F(x, y)$ denotes the joint cumulative distribution function for this probability distribution, find the following values:
i. $F(1.2, .9)$
ii. $F(-3,1.5)$
iii. $F(2,0)$
iv. $F(4,2.7)$
2. Suppose the joint probability distribution function of X and Y is given by

$$
f(x, y)=c\left(x^{2}+y^{2}\right)
$$

for $x=-1,0,1,3$ and $y=-1,2,3$ and zero otherwise.
(a) Find the value of c.
(b) Compute $P(X \leq 1, Y>2)$
(c) Compute $P(X=0, Y \leq 2)$
(d) Compute $P(X+Y>2)$
3. Show that there is no value of k for which

$$
f(x, y)=k y(2 y-x), \text { for } x=0,1,2,3 \text { and } y=0,1,2
$$

can serve as the joint probability distribution of two random variables.

2 Continuous Multivariate Distributions

1. If a radioactive particle is randomly located in a square of unit length, with coordinates (X, Y) selected randomly. A reasonable model for the joint density probability function for its X and Y is

$$
f(x, y)=\left\{\begin{array}{l}
1 \quad 0 \leq x \leq 1, \quad 0 \leq y \leq 1 \\
0 \quad \text { elsewhere }
\end{array}\right.
$$

(a) What is $P(X>.5, Y>.5)$?
(b) What is $P(X-Y>.5)$?
(c) What is $P(X Y<1 / 2)$?
2. Determine k so that

$$
p(x, y)=\left\{\begin{array}{lc}
k x(x-y) & 0<x<1,-x<y<x \\
0 & \text { elsewhere }
\end{array}\right.
$$

can serve as a joint probability density.
3. If the joint probability density of X and Y is given by

$$
p(x, y)= \begin{cases}24 x y & 0<x<1,0<y<1, x+y<1 \\ 0 & \text { elsewhere }\end{cases}
$$

find $P\left(X+Y<\frac{1}{2}\right)$.
4. If the joint probability density of X and Y is given by

$$
f(x, y)= \begin{cases}2 & \text { for } x>0, y>0, x+y<1 \\ 0 & \text { elsewhere }\end{cases}
$$

find
(a) $P\left(X \leq \frac{1}{2}, Y \leq \frac{1}{2}\right)$;
(b) $P\left(X+Y>\frac{2}{3}\right)$;
(c) $P(X>2 Y)$.
5. pg. 234, \#5.11.

3 Marginal and Conditional Distributions

1. With reference to problem $\# 1$ in the "Discrete Multivariate Distributions" section of this assignment, find
(a) The marginal distribution of X;
(b) The marginal distribution of Y;
(c) The conditional distribution of X given $Y=1$;
(d) The conditional distribution of Y given $X=0$;
2. Check whether the discrete random variables X and Y are independent if their joint probability distribution $f(x, y)$ is given by
(a) $f(x, y)=1 / 4$ for $x=-1$ and $y=-1, x=-1$ and $y=1, x=1$ and $y=-1$, and $x=1$ and $y=1$;
(b) $f(x, y)=1 / 3$ for $x=0$ and $y=0, x=0$ and $y=1$, and $x=1$ and $y=1$.
3. If the joint probability density of X and Y is given by

$$
f(x, y)= \begin{cases}\frac{1}{4}(2 x+y) & \text { for } 0<x<1,0<y<2 \\ 0 & \text { elsewhere }\end{cases}
$$

find
(a) the marginal density of X;
(b) the conditional density of Y given $X=1 / 4$;
(c) the marginal density of Y;
(d) the conditional density of X given $Y=1$.
4. If the independent random variables X and Y have the marginal densities

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{cc}
\frac{1}{2} & \text { for } 0<x<2 \\
0 & \text { elsewhere }
\end{array}\right. \\
& g(y)=\left\{\begin{array}{cc}
\frac{1}{3} & \text { for } 0<y<3 \\
0 & \text { elsewhere }
\end{array}\right.
\end{aligned}
$$

(a) Find the joint probability density of X and Y.
(b) Find $P\left(X^{2}+Y^{2}>1\right)$.
5. Suppose the joint density of X and Y is given by

$$
f(x, y)= \begin{cases}\frac{1}{y} & \text { for } 0<x<y, 0<y<1 \\ 0 & \text { elsewhere }\end{cases}
$$

(a) Find the probability that the sum of X and Y will exceed $1 / 2$.
(b) Find the marginal density of X.
(c) Find the marginal density of Y.
(d) Determine whether the two random variables are independent.

