MTH 225: Homework #1

Due Date: January 26, 2024

- 1. Sign up for Piazza. I will check the roster for your name.
- 2. Solve the following systems of equations using row reduction. For those systems with infinitely many solutions, find a parametric description of the solution space.

(a) (b) (c)

$$2u + v + w = 5$$
 $2x + 3y = 7$ $x - z = 1$
 $4u - 6v + w = -2$ $x - 3y = 5$ $y + 2z - w = 3$
 $-2u + 7v + 2w = 9$ $5x + 3y = 18$ $x + 2y + 3z - w = 7$

- 3. Which of the following subsets of \mathbb{R}^3 are subspaces of \mathbb{R}^3 under the standard operations of vector addition and scalar multiplication. If a set is a subspace, prove it. If a set is not a subspace explain why.
 - (a) $V = \{(x, y, z) \in \mathbb{R}^3 : y = 0\}$
 - (b) $W = \{(x, y, z) \in \mathbb{R}^3 : y = 1\}$
 - (c) $U = \{(x, y, z) \in \mathbb{R}^3 : xy = 0\}$
 - (d) $S = \{(x, y, z) \in \mathbb{R}^3 : z x = 2y\}$
- 4. Show that the set of 2×2 matrices of the following form is a subspace of $M_{2\times 2}(\mathbb{R})$:

$$\begin{bmatrix} a & b \\ -b & c \end{bmatrix} \text{ for } a, b, c \in \mathbb{R}.$$

- 5. Determine whether the following sets are subspaces of $P_2(\mathbb{R})$. If a set is a subspace prove it. If a set is not a subspace explain why it is not.
 - (a) Polynomials of the form $p(t) = at^2$ for $a \in \mathbb{R}$.
 - (b) Polynomials of the form $p(t) = a + t^2$ for $a \in \mathbb{R}$.
 - (c) Polynomials p(t) in $P_2(\mathbb{R})$ with integer coefficients.
 - (d) Polynomials p(t) in $P_2(\mathbb{R})$ with p(0) = 0.
- 6. Are the functions 1 + x, 1 x, and $1 + x + x^2$ linearly dependent or independent? Why?
- 7. Find a vector that, together with the vectors $[1, 1, 1]^T$ and $[1, 2, 1]^T$, forms a basis of \mathbb{R}^3 .

8. Determine if the following sets of vectors are linearly independent and determine a basis for its span.

(a) $\left\{ \begin{bmatrix} 1\\2\\3\end{bmatrix}, \begin{bmatrix} 2\\3\\1\end{bmatrix}, \begin{bmatrix} 3\\2\\1\end{bmatrix} \right\}$	(d) $\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\3\\4 \end{bmatrix} \right\}$
(b) $\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 3\\4 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$	(e) $\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 3\\6\\9 \end{bmatrix} \right\}$
(c) $\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\11 \end{bmatrix} \right\}$	(f) $\left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$

9. Suppose that W_1 and W_2 are subspaces of \mathbb{R}^n . Define the following subsets of \mathbb{R}^n :

$$W_1 + W_2 = \{w_1 + w_2 \mid w_1 \in W_1 \text{ and } w_2 \in W_2\}$$

$$W_1 \cap W_2 = \{w \in \mathbb{R}^n \mid w \in W_1 \text{ and } w \in W_2\}$$

$$W_1 \cup W_2 = \{w \in \mathbb{R}^n \mid w \in W_1 \text{ or } w \in W_2\}$$

- (a) Prove that $W_1 \cap W_2$ is a subspace of \mathbb{R}^n .
- (b) Prove that $W_1 + W_2$ is a subspace of \mathbb{R}^n .
- (c) Show by means of an example that $W_1 \cup W_2$ is not necessarily a subspace of \mathbb{R}^n . Which of the three rules are not satisfied?
- (d) Show that W_1 and W_2 are subsets of $W_1 + W_2$.
- (e) Show that if V is another subspace that contains both W_1 and W_2 , then V contains $W_1 + W_2$.