MTH 225: Homework \#1

Due Date: January 26, 2024

1. Sign up for Piazza. I will check the roster for your name.
2. Solve the following systems of equations using row reduction. For those systems with infinitely many solutions, find a parametric description of the solution space.
(a)
(b)
(c)

$$
2 u+v+w=5
$$

$$
2 x+3 y=7
$$

$$
4 u-6 v+w=-2 \quad x-3 y=5
$$

$$
-2 u+7 v+2 w=9 \quad 5 x+3 y=18
$$

$$
\begin{aligned}
x-z & =1 \\
y+2 z-w & =3 \\
x+2 y+3 z-w & =7
\end{aligned}
$$

3. Which of the following subsets of \mathbb{R}^{3} are subspaces of \mathbb{R}^{3} under the standard operations of vector addition and scalar multiplication. If a set is a subspace, prove it. If a set is not a subspace explain why.
(a) $V=\left\{(x, y, z) \in \mathbb{R}^{3}: y=0\right\}$
(b) $W=\left\{(x, y, z) \in \mathbb{R}^{3}: y=1\right\}$
(c) $U=\left\{(x, y, z) \in \mathbb{R}^{3}: x y=0\right\}$
(d) $S=\left\{(x, y, z) \in \mathbb{R}^{3}: z-x=2 y\right\}$
4. Show that the set of 2×2 matrices of the following form is a subspace of $M_{2 \times 2}(\mathbb{R})$:

$$
\left[\begin{array}{cc}
a & b \\
-b & c
\end{array}\right] \text { for } a, b, c \in \mathbb{R}
$$

5. Determine whether the following sets are subspaces of $P_{2}(\mathbb{R})$. If a set is a subspace prove it. If a set is not a subspace explain why it is not.
(a) Polynomials of the form $p(t)=a t^{2}$ for $a \in \mathbb{R}$.
(b) Polynomials of the form $p(t)=a+t^{2}$ for $a \in \mathbb{R}$.
(c) Polynomials $p(t)$ in $P_{2}(\mathbb{R})$ with integer coefficients.
(d) Polynomials $p(t)$ in $P_{2}(\mathbb{R})$ with $p(0)=0$.
6. Are the functions $1+x, 1-x$, and $1+x+x^{2}$ linearly dependent or independent? Why?
7. Find a vector that, together with the vectors $[1,1,1]^{T}$ and $[1,2,1]^{T}$, forms a basis of \mathbb{R}^{3}.
8. Determine if the following sets of vectors are linearly independent and determine a basis for its span.
(a) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]\right\}$
(d) $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]\right\}$
(b) $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 4\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$
(e) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 6 \\ 9\end{array}\right]\right\}$
(c) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 2 \\ 11\end{array}\right]\right\}$
(f) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$
9. Suppose that W_{1} and W_{2} are subspaces of \mathbb{R}^{n}. Define the following subsets of \mathbb{R}^{n} :

$$
\begin{aligned}
& W_{1}+W_{2}=\left\{w_{1}+w_{2} \mid w_{1} \in W_{1} \text { and } w_{2} \in W_{2}\right\} \\
& W_{1} \cap W_{2}=\left\{w \in \mathbb{R}^{n} \mid w \in W_{1} \text { and } w \in W_{2}\right\} \\
& W_{1} \cup W_{2}=\left\{w \in \mathbb{R}^{n} \mid w \in W_{1} \text { or } w \in W_{2}\right\}
\end{aligned}
$$

(a) Prove that $W_{1} \cap W_{2}$ is a subspace of \mathbb{R}^{n}.
(b) Prove that $W_{1}+W_{2}$ is a subspace of \mathbb{R}^{n}.
(c) Show by means of an example that $W_{1} \cup W_{2}$ is not necessarily a subspace of \mathbb{R}^{n}. Which of the three rules are not satisfied?
(d) Show that W_{1} and W_{2} are subsets of $W_{1}+W_{2}$.
(e) Show that if V is another subspace that contains both W_{1} and W_{2}, then V contains $W_{1}+W_{2}$.

