MTH 225: Homework \#3

Due Date: February 09, 2024

1. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear transformation with values

$$
\left.T\left(\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
2
\end{array}\right], T\left(\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{r}
-2 \\
1
\end{array}\right], \text { and } T\left(\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{r}
-1 \\
2
\end{array}\right]\right)
$$

(a) Find the matrix $\left[T\left(\mathcal{B}, \mathcal{S}_{2}\right)\right]$ of T in the bases

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right\} \text { and } \mathcal{S}_{2}=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}
$$

where $\left[T\left(\mathcal{B}, \mathcal{S}_{2}\right)\right][\mathbf{v}]_{\mathcal{B}}=[T(\mathbf{v})]_{\mathcal{S}_{2}}$.
(b) Find the matrix $\left[T\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)\right]$ of T in the standard bases

$$
\mathcal{S}_{1}=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\} \text { and } \mathcal{S}_{2}=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}
$$

where $\left[T\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)\right][\mathbf{v}]_{\mathcal{S}_{1}}=[T(\mathbf{v})]_{\mathcal{S}_{2}}$.
2. Consider the two bases \mathcal{B} and \mathcal{S} of \mathbb{R}^{2} where

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right\} \text { and } \mathcal{S}=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}
$$

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by

$$
T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{l}
x-2 y \\
3 x+y
\end{array}\right]
$$

(a) Find the matrix representation of the identity linear transformation $I: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$ with respect to the input basis \mathcal{B} and output basis \mathcal{S}. That is, find the matrix $P=[I(\mathcal{B}, \mathcal{S})]$ where $P[\mathbf{v}]_{\mathcal{B}}=[\mathbf{v}]_{\mathcal{S}}$.
(b) Find the matrix representation of the identity linear transformation $I: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$ with respect to the input basis \mathcal{S} and output basis \mathcal{B}. That is, find the matrix $Q=[I(\mathcal{S}, \mathcal{B})]$ where $Q[\mathbf{v}]_{\mathcal{S}}=[\mathbf{v}]_{\mathcal{B}}$.
(c) Find the matrix $A=[T(\mathcal{S}, \mathcal{S})]$, where $A[\mathbf{v}]_{\mathcal{S}}=[T(\mathbf{v})]_{\mathcal{S}}$.
(d) Find the matrix $B=[T(\mathcal{S}, \mathcal{B})]$, where $B[\mathbf{v}]_{\mathcal{S}}=[T(\mathbf{v})]_{\mathcal{B}}$.
(e) Write B as a product of A and any of the matrices P and Q that are relevant.
3. Let $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ be the linear transformation defined by $T\left(a+b x+c x^{2}\right)=(a+c)+b x^{2}$. Let $\mathcal{S}=\left\{1, x, x^{2}\right\}$ be the standard basis of $P_{2}(\mathbb{R})$, and let $\mathcal{B}=\left\{1+x, x, 1+x^{2}\right\}$ be another basis.
(a) Find the matrix $[T(\mathcal{S}, \mathcal{S})]$ of T with respect to \mathcal{S}.
(b) Find the matrix $[T(\mathcal{B}, \mathcal{B})]$ of T with respect to \mathcal{B}.
(c) Find an invertible matrix P so that $P[T(\mathcal{B}, \mathcal{B})] P^{-1}=[T(\mathcal{S}, \mathcal{S})]$.
4. Suppose $\mathbf{v} \in V$ is a vector in some vector space V and $T: V \rightarrow V$ a linear transformation such that $\mathcal{B}=\left\{\mathbf{v}, T(\mathbf{v}), T^{2}(\mathbf{v}), \ldots, T^{n-1}(\mathbf{v})\right\}$ is a basis for V.
(a) Show that there exists constants $a_{0}, a_{1}, \ldots, a_{n-1} \in \mathbb{R}$ such that

$$
T^{n}(\mathbf{v})=a_{0} \mathbf{v}+a_{1} T(\mathbf{v})+\ldots+a_{n-1} T^{n-1}(\mathbf{v})
$$

(b) Find the matrix $[T(\mathcal{B}, \mathcal{B})]$ of T with respect to \mathcal{B}.
(c) When does T map onto V and when is T one-to-one?
(d) Find the characteristic polynomial $c_{T}(x)$ of T. (Hint: Do cases $n=2$ and 3 to get a conjecture and prove it by induction).
5. Suppose that the vector $v=(1,1) \in \mathbb{R}^{2}$ is an eigenvector of $A \in \operatorname{Mat}_{2 \times 2}(\mathbb{R})$ corresponding to the eigenvector λ. Draw on a graph the vectors v and $A v$ for each of the following cases. (Make a separate graph for each part.)
(a) $\lambda>1$.
(b) $\lambda=1$.
(c) $0<\lambda<1$.
(d) $\lambda=0$.
(e) $-1<\lambda<0$.
(f) $\lambda=-1$.
(g) $\lambda<-1$.
6. Prove that 0 is an eigenvalue of T if and only if $\operatorname{Ker}(T)$, the nullspace of T, is $\neq\{0\}$.
7. If λ is an eigenvalue for an $n \times n$ matrix A, show that λ^{2} is an eigenvalue for A^{2}. More generally prove that if $f(x)$ is any polynomial with coefficients in \mathbb{R}, then $f(\lambda)$ is an eigenvalue for $f(A)$.
8. A matrix N is called nilpotent if $N^{k}=0$ for some positive integer k. Prove that the only possible eigenvalue of a nilpotent matrix is 0 .

