MTH 225: Homework #3

Due Date: February 09, 2024

1. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation with values

$$T\left(\left[\begin{array}{c}1\\1\\0\end{array}\right]\right) = \left[\begin{array}{c}1\\2\end{array}\right], \ T\left(\left[\begin{array}{c}0\\1\\1\end{array}\right]\right) = \left[\begin{array}{c}-2\\1\end{array}\right], \text{ and } T\left(\left[\begin{array}{c}1\\0\\1\end{array}\right]\right) = \left[\begin{array}{c}-1\\2\end{array}\right]).$$

(a) Find the matrix $[T(\mathcal{B}, \mathcal{S}_2)]$ of T in the bases

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\} \text{ and } \mathcal{S}_2 = \left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$$

where $[T(\mathcal{B}, \mathcal{S}_2)][\mathbf{v}]_{\mathcal{B}} = [T(\mathbf{v})]_{\mathcal{S}_2}$.

(b) Find the matrix $[T(\mathcal{S}_1, \mathcal{S}_2)]$ of T in the standard bases

$$\mathcal{S}_1 = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\} \text{ and } \mathcal{S}_2 = \left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\},$$

where $[T(\mathcal{S}_1, \mathcal{S}_2)][\mathbf{v}]_{\mathcal{S}_1} = [T(\mathbf{v})]_{\mathcal{S}_2}.$

2. Consider the two bases \mathcal{B} and \mathcal{S} of \mathbb{R}^2 where

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\} \text{ and } \mathcal{S} = \left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$$

Let $T:\mathbb{R}^2\to\mathbb{R}^2$ be the linear transformation defined by

$$T\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = \begin{bmatrix}x-2y\\3x+y\end{bmatrix}.$$

- (a) Find the matrix representation of the identity linear transformation $I : \mathbb{R}^2 \to \mathbb{R}^2$ with respect to the input basis \mathcal{B} and output basis \mathcal{S} . That is, find the matrix $P = [I(\mathcal{B}, \mathcal{S})]$ where $P[\mathbf{v}]_{\mathcal{B}} = [\mathbf{v}]_{\mathcal{S}}$.
- (b) Find the matrix representation of the identity linear transformation $I : \mathbb{R}^2 \to \mathbb{R}^2$ with respect to the input basis \mathcal{S} and output basis \mathcal{B} . That is, find the matrix $Q = [I(\mathcal{S}, \mathcal{B})]$ where $Q[\mathbf{v}]_{\mathcal{S}} = [\mathbf{v}]_{\mathcal{B}}$.
- (c) Find the matrix $A = [T(\mathcal{S}, \mathcal{S})]$, where $A[\mathbf{v}]_{\mathcal{S}} = [T(\mathbf{v})]_{\mathcal{S}}$.
- (d) Find the matrix $B = [T(\mathcal{S}, \mathcal{B})]$, where $B[\mathbf{v}]_{\mathcal{S}} = [T(\mathbf{v})]_{\mathcal{B}}$.
- (e) Write B as a product of A and any of the matrices P and Q that are relevant.
- 3. Let $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ be the linear transformation defined by $T(a + bx + cx^2) = (a + c) + bx^2$. Let $\mathcal{S} = \{1, x, x^2\}$ be the standard basis of $P_2(\mathbb{R})$, and let $\mathcal{B} = \{1 + x, x, 1 + x^2\}$ be another basis.
 - (a) Find the matrix $[T(\mathcal{S}, \mathcal{S})]$ of T with respect to \mathcal{S} .
 - (b) Find the matrix $[T(\mathcal{B}, \mathcal{B})]$ of T with respect to \mathcal{B} .
 - (c) Find an invertible matrix P so that $P[T(\mathcal{B}, \mathcal{B})]P^{-1} = [T(\mathcal{S}, \mathcal{S})].$

- 4. Suppose $\mathbf{v} \in V$ is a vector in some vector space V and $T: V \to V$ a linear transformation such that $\mathcal{B} = {\mathbf{v}, T(\mathbf{v}), T^2(\mathbf{v}), \dots, T^{n-1}(\mathbf{v})}$ is a basis for V.
 - (a) Show that there exists constants $a_0, a_1, \ldots, a_{n-1} \in \mathbb{R}$ such that

$$T^{n}(\mathbf{v}) = a_0\mathbf{v} + a_1T(\mathbf{v}) + \ldots + a_{n-1}T^{n-1}(\mathbf{v}).$$

- (b) Find the matrix $[T(\mathcal{B}, \mathcal{B})]$ of T with respect to \mathcal{B} .
- (c) When does T map onto V and when is T one-to-one?
- (d) Find the characteristic polynomial $c_T(x)$ of T. (Hint: Do cases n = 2 and 3 to get a conjecture and prove it by induction).
- 5. Suppose that the vector $v = (1,1) \in \mathbb{R}^2$ is an eigenvector of $A \in \operatorname{Mat}_{2 \times 2}(\mathbb{R})$ corresponding to the eigenvector λ . Draw on a graph the vectors v and Av for each of the following cases. (Make a separate graph for each part.)
 - (a) $\lambda > 1$.
 - (b) $\lambda = 1$.
 - (c) $0 < \lambda < 1$.
 - (d) $\lambda = 0.$
 - (e) $-1 < \lambda < 0$.
 - (f) $\lambda = -1$.
 - (g) $\lambda < -1$.
- 6. Prove that 0 is an eigenvalue of T if and only if Ker(T), the nullspace of T, is $\neq \{0\}$.
- 7. If λ is an eigenvalue for an $n \times n$ matrix A, show that λ^2 is an eigenvalue for A^2 . More generally prove that if f(x) is any polynomial with coefficients in \mathbb{R} , then $f(\lambda)$ is an eigenvalue for f(A).
- 8. A matrix N is called *nilpotent* if $N^k = 0$ for some positive integer k. Prove that the only possible eigenvalue of a nilpotent matrix is 0.