MTH 225: Homework \#4

Due Date: February 23, 2024

1. Consider the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
T\left(a_{1}, a_{2}, a_{3}\right)=\left(4 a_{1}+a_{3}, 2 a_{1}+3 a_{2}+2 a_{3}, a_{1}+4 a_{3}\right) .
$$

(a) Let $\mathcal{S}=\{(1,0,0),(0,1,0),(0,0,1)\}$ be the standard basis of \mathbb{R}^{3}. Find $[T(\mathcal{S}, \mathcal{S})]$ the matrix of T with respect to \mathcal{S}.
(b) Find the characteristic polynomial of T. Are all the roots in \mathbb{R} ?
(c) Find the eigenvalues of T.
(d) Find a basis for the eigenspace of T corresponding to each eigenvalue. What are their dimensions?
(e) Find a basis \mathcal{B} for \mathbb{R}^{3} that consists of eigenvectors of T.
(f) Find $[T(\mathcal{B}, \mathcal{B})]$, the matrix of T with respect to \mathcal{B}.
(g) Find the matrix P so that $[T(\mathcal{B}, \mathcal{B})]=P^{-1}[T(\mathcal{S}, \mathcal{S})] P$
2. If $B=P A P^{-1}$, then prove $B^{n}=P A^{n} P^{-1}$ for any $n \in \mathbb{Z}$.
3. Suppose that A and B are $n \times n$ diagonalizable matrices with the same eigenspaces (but not necessarily the same eigenvalues). Prove that $A B=B A$.
4. Let $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right\}$ be a set of distinct eigenvalues of T, and let $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be a set of vectors such that v_{i} is an eigenvector corresponding to the eigenvalue λ_{i}. Prove that $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is a set of linearly independent vectors.
5. Consider $e^{x}, e^{2 x}, \ldots, e^{n x}$. Show that each of these functions in $\mathbb{C}^{\infty}(\mathbb{R}, \mathbb{R})$ is an eigenvector for the differentiation operator. Here, $\mathbb{C}(\mathbb{R}, \mathbb{R})$ denotes the set of infinitely differentiable functions from \mathbb{R} to \mathbb{R}.
6. Let $\vec{u}=\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{R}^{n}$ and $\vec{v}=\left(v_{1}, \ldots v_{n}\right) \in \mathbb{R}^{n}$. Let $A=\vec{u} \vec{v}^{T}$
(a) Find the columns of A in terms of \vec{u} and \vec{v}.
(b) Show that A is a rank 1 matrix.
7. Give an example of a matrix $A \in M_{4 \times 4}(\mathbb{R})$ such that $\operatorname{im}(A)=\operatorname{ker}(A)$. Show that there does not exist a matrix $A \in M_{5 \times 5}(\mathbb{R})$ such that $\operatorname{im}(A)=\operatorname{ker}(A)$.
8. Let $\vec{u}, \vec{v} \in \mathbb{C}^{n}$. Hint: For this problem you might have to review the geometric interpretation of how vectors are added and subtracted.
(a) Prove that $\langle\vec{u}+\vec{v}, \vec{u}-\vec{v}\rangle=\|\vec{u}\|^{2}-\|\vec{v}\|^{2}$.
(b) Prove that if \vec{u} and \vec{v} have the same norm, then $\vec{u}+\vec{v}$ is orthogonal to $\vec{u}-\vec{v}$.
(c) Prove that the diagonals of a rhombus are orthogonal to each other.
(d) Prove the following

$$
\|\vec{u}+\vec{v}\|^{2}+\|\vec{u}-\vec{v}\|^{2}=2\left(\|\vec{u}\|^{2}+\|\vec{v}\|^{2}\right) .
$$

(e) Prove that the sum of the squares of the length of the four sides of a parallelogram is equal to the sum of the squares of the length of the two diagonals.
9. If $\vec{v}_{1} \ldots \vec{v}_{n}$ are mutually orthogonal nonzero vectors, prove that they must be linearly independent.

