MTH 225: Homework #4

Due Date: February 23, 2024

1. Consider the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$T(a_1, a_2, a_3) = (4a_1 + a_3, 2a_1 + 3a_2 + 2a_3, a_1 + 4a_3).$$

- (a) Let $S = \{(1,0,0), (0,1,0), (0,0,1)\}$ be the standard basis of \mathbb{R}^3 . Find [T(S,S)] the matrix of T with respect to S.
- (b) Find the characteristic polynomial of T. Are all the roots in \mathbb{R} ?
- (c) Find the eigenvalues of T.
- (d) Find a basis for the eigenspace of T corresponding to each eigenvalue. What are their dimensions?
- (e) Find a basis \mathcal{B} for \mathbb{R}^3 that consists of eigenvectors of T.
- (f) Find $[T(\mathcal{B}, \mathcal{B})]$, the matrix of T with respect to \mathcal{B} .
- (g) Find the matrix P so that $[T(\mathcal{B}, \mathcal{B})] = P^{-1}[T(\mathcal{S}, \mathcal{S})]P$
- 2. If $B = PAP^{-1}$, then prove $B^n = PA^nP^{-1}$ for any $n \in \mathbb{Z}$.
- 3. Suppose that A and B are $n \times n$ diagonalizable matrices with the same eigenspaces (but not necessarily the same eigenvalues). Prove that AB = BA.
- 4. Let $\{\lambda_1, \lambda_2, \ldots, \lambda_k\}$ be a set of *distinct* eigenvalues of T, and let $\{v_1, v_2, \ldots, v_k\}$ be a set of vectors such that v_i is an eigenvector corresponding to the eigenvalue λ_i . Prove that $\{v_1, v_2, \ldots, v_k\}$ is a set of linearly independent vectors.
- 5. Consider $e^x, e^{2x}, \ldots, e^{nx}$. Show that each of these functions in $\mathbb{C}^{\infty}(\mathbb{R}, \mathbb{R})$ is an eigenvector for the differentiation operator. Here, $\mathbb{C}(\mathbb{R}, \mathbb{R})$ denotes the set of infinitely differentiable functions from \mathbb{R} to \mathbb{R} .
- 6. Let $\vec{u} = (u_1, \dots, u_n) \in \mathbb{R}^n$ and $\vec{v} = (v_1, \dots, v_n) \in \mathbb{R}^n$. Let $A = \vec{u}\vec{v}^T$
 - (a) Find the columns of A in terms of \vec{u} and \vec{v} .
 - (b) Show that A is a rank 1 matrix.
- 7. Give an example of a matrix $A \in M_{4\times 4}(\mathbb{R})$ such that $\operatorname{im}(A) = \operatorname{ker}(A)$. Show that there does not exist a matrix $A \in M_{5\times 5}(\mathbb{R})$ such that $\operatorname{im}(A) = \operatorname{ker}(A)$.
- 8. Let $\vec{u}, \vec{v} \in \mathbb{C}^n$. Hint: For this problem you might have to review the geometric interpretation of how vectors are added and subtracted.
 - (a) Prove that $\langle \vec{u} + \vec{v}, \vec{u} \vec{v} \rangle = \|\vec{u}\|^2 \|\vec{v}\|^2$.
 - (b) Prove that if \vec{u} and \vec{v} have the same norm, then $\vec{u} + \vec{v}$ is orthogonal to $\vec{u} \vec{v}$.
 - (c) Prove that the diagonals of a rhombus are orthogonal to each other.
 - (d) Prove the following

$$\|\vec{u} + \vec{v}\|^2 + \|\vec{u} - \vec{v}\|^2 = 2(\|\vec{u}\|^2 + \|\vec{v}\|^2)$$

- (e) Prove that the sum of the squares of the length of the four sides of a parallelogram is equal to the sum of the squares of the length of the two diagonals.
- 9. If $\vec{v}_1 \dots \vec{v}_n$ are mutually orthogonal nonzero vectors, prove that they must be linearly independent.