MTH 225: Homework #5

Due Date: March 01, 2024

- 1. Suppose $A, B \in \mathbb{M}_{n \times n}(\mathbb{C})$ are two similar matrices. Prove that A and B have the same characteristic polynomial. **Hint:** For this problem you might have to review properties of determinants.
- 2. Prove that if $A \in M_{n \times n}(\mathbb{C})$ is diagonalizable then A has a square root, i.e., there exists $B \in M_{n \times n}(\mathbb{C})$ such that $B^2 = A$.
- 3. Let A and \vec{v} be given by

$$A = \begin{bmatrix} 1 & 2 & 5 \\ -1 & 1 & -4 \\ -1 & 4 & -3 \\ 1 & -4 & 7 \\ 1 & 2 & 1 \end{bmatrix} \text{ and } \vec{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}.$$

- (a) Find an orthonormal basis for im(A).
- (b) Find an orthonormal basis for $im(A)^{\perp}$.
- (c) Compute the orthogonal projection of \vec{v} onto im(A).
- (d) Compute the orthogonal projection of \vec{v} onto $\operatorname{im}(A)^{\perp}$.
- 4. Let W be a subspace of \mathbb{C}^n and $\{\vec{u}_1, \ldots, \vec{u}_k\}$ be an orthonormal basis of W.
 - (a) Show that for all $\vec{v} \in \mathbb{C}^n$ there exists $\vec{w_1} \in W$ and $\vec{w_2} \in W^{\perp}$ such that $\vec{v} = \vec{w_1} + \vec{w_2}$.
 - (b) Prove that $W \cap W^{\perp} = \{0\}.$
 - (c) Prove that $\dim(W) + \dim(W^{\perp}) = n$.
- 5. Prove that if S is a subset of \mathbb{C}^n then $(S^{\perp})^{\perp} = \operatorname{span}(S)$
- 6. Let $A \in M_{m \times n}(\mathbb{C})$.
 - (a) Prove that $\ker(A) \subseteq \ker(A^*A)$.
 - (b) Prove that $\ker(A^*A) \subseteq \ker(A)$. **Hint:** If $\vec{v} \in \ker(A^*A)$, what is $\langle A\vec{v}, A\vec{v} \rangle$?
 - (c) Prove that $\operatorname{rank}(A^*A) = \operatorname{rank}(A)$.
 - (d) Prove that the columns of A are linearly independent if and only if A^*A is invertible.
- 7. Suppose $A \in M_{n \times n}(\mathbb{C})$ and $z, w \in \mathbb{C}$.
 - (a) Prove that $\overline{zw} = \overline{z}\overline{w}$.
 - (b) Prove that $det(A) = det(A^*)$.
 - (c) Prove that $|\det(A)|$ equals the product of its singular values.
- 8. Prove that if λ is an eigenvalue of a unitary matrix then $|\lambda| = 1$.
- 9. Prove that if $A \in M_{m \times n}(\mathbb{C})$ is a rank 1 matrix then it is of the form $\vec{u}\vec{v}^*$ for some vectors \vec{u} and \vec{v} .

10. Determine the singular value decompositions of the following matrices.

(a)	A =	$\begin{bmatrix} 3 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0\\ -2 \end{bmatrix}$
(b)	B =	$\begin{bmatrix} 2\\ 0 \end{bmatrix}$	$\begin{bmatrix} 0\\ 3 \end{bmatrix}$
(c)	C =	$\begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$
(d)	D =	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1\\ 0 \end{bmatrix}$
(e)	E =	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

11. If P is a unitary matrix, show that PA has the same singular values as A.