MTH 225: Homework \#5

Due Date: March 01, 2024

1. Suppose $A, B \in \mathbb{M}_{n \times n}(\mathbb{C})$ are two similar matrices. Prove that A and B have the same characteristic polynomial. Hint: For this problem you might have to review properties of determinants.
2. Prove that if $A \in M_{n \times n}(\mathbb{C})$ is diagonalizable then A has a square root, i.e., there exists $B \in M_{n \times n}(\mathbb{C})$ such that $B^{2}=A$.
3. Let A and \vec{v} be given by

$$
A=\left[\begin{array}{ccc}
1 & 2 & 5 \\
-1 & 1 & -4 \\
-1 & 4 & -3 \\
1 & -4 & 7 \\
1 & 2 & 1
\end{array}\right] \text { and } \vec{v}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5
\end{array}\right]
$$

(a) Find an orthonormal basis for $\operatorname{im}(A)$.
(b) Find an orthonormal basis for $\operatorname{im}(A)^{\perp}$.
(c) Compute the orthogonal projection of \vec{v} onto $\operatorname{im}(A)$.
(d) Compute the orthogonal projection of \vec{v} onto $\operatorname{im}(A)^{\perp}$.
4. Let W be a subspace of \mathbb{C}^{n} and $\left\{\vec{u}_{1}, \ldots \vec{u}_{k}\right\}$ be an orthonormal basis of W.
(a) Show that for all $\vec{v} \in \mathbb{C}^{n}$ there exists $\vec{w}_{1} \in W$ and $\vec{w}_{2} \in W^{\perp}$ such that $\vec{v}=\vec{w}_{1}+\vec{w}_{2}$.
(b) Prove that $W \cap W^{\perp}=\{0\}$.
(c) Prove that $\operatorname{dim}(W)+\operatorname{dim}\left(W^{\perp}\right)=n$.
5. Prove that if S is a subset of \mathbb{C}^{n} then $\left(S^{\perp}\right)^{\perp}=\operatorname{span}(S)$
6. Let $A \in M_{m \times n}(\mathbb{C})$.
(a) Prove that $\operatorname{ker}(A) \subseteq \operatorname{ker}\left(A^{*} A\right)$.
(b) Prove that $\operatorname{ker}\left(A^{*} A\right) \subseteq \operatorname{ker}(A)$. Hint: If $\vec{v} \in \operatorname{ker}\left(A^{*} A\right)$, what is $\langle A \vec{v}, A \vec{v}\rangle$?
(c) Prove that $\operatorname{rank}\left(A^{*} A\right)=\operatorname{rank}(A)$.
(d) Prove that the columns of A are linearly independent if and only if $A^{*} A$ is invertible.
7. Suppose $A \in M_{n \times n}(\mathbb{C})$ and $z, w \in \mathbb{C}$.
(a) Prove that $\overline{z w}=\bar{z} \bar{w}$.
(b) Prove that $\operatorname{det}(A)=\overline{\operatorname{det}\left(A^{*}\right)}$.
(c) Prove that $|\operatorname{det}(A)|$ equals the product of its singular values.
8. Prove that if λ is an eigenvalue of a unitary matrix then $|\lambda|=1$.
9. Prove that if $A \in M_{m \times n}(\mathbb{C})$ is a rank 1 matrix then it is of the form $\vec{u} \vec{v}^{*}$ for some vectors \vec{u} and \vec{v}.
10. Determine the singular value decompositions of the following matrices.
(a) $A=\left[\begin{array}{cc}3 & 0 \\ 0 & -2\end{array}\right]$
(b) $B=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$
(c) $C=\left[\begin{array}{ll}0 & 2 \\ 0 & 0 \\ 0 & 0\end{array}\right]$
(d) $D=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$
(e) $E=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
11. If P is a unitary matrix, show that $P A$ has the same singular values as A.

