MTH 225: Homework \#6

Due Date: March 08, 2024

1. Let $V=C^{\infty}([-1,1])$, i.e., the vector space of infinitely differentiable real valued functions defined on the interval $[-1,1]$. Define the operation $\langle\cdot, \cdot\rangle: V \times V \mapsto \mathbb{R}$ by

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x
$$

and let $U \subset V$ be the subspace defined by $U=\operatorname{span}\left\{1, x, x^{2}, x^{3}\right\}$.
(a) Show that the operation $\langle\cdot, \cdot\rangle$ defined above is an inner product on V.
(b) Using the above inner product, find an orthonormal basis for U.
2. Suppose $A, B \in M_{n \times n}(\mathbb{C})$ are unitary matrices. Prove that $A B$ is a unitary matrix.
3. Suppose that $A=P \Sigma Q^{*}$ is a singular value decomposition of A. What is a singular value decomposition for A^{*} ?
4. Suppose $A \in M_{n \times n}(\mathbb{C})$.
(a) Prove that $\operatorname{ker}\left(A^{*}\right)=(\operatorname{im}(A))^{\perp}$.
(b) Prove that $\operatorname{im}\left(A^{*}\right)=(\operatorname{ker}(A))^{\perp}$.
(c) Prove that $\operatorname{ker}(A)=\left(\operatorname{im}\left(A^{*}\right)\right)^{\perp}$.
(d) Prove that $\operatorname{im}(A)=\left(\operatorname{ker}\left(A^{*}\right)\right)^{\perp}$.
(e) Let $\vec{b} \in \mathbb{C}^{n}$. Prove that there exists a $\vec{v} \in \mathbb{C}^{n}$ that satisfies $A \vec{v}=\vec{b}$ if and only if $\langle b, \vec{w}\rangle=0$ for all \vec{w} satisfying $A^{*} \vec{w}=0$.
5. Suppose $A, B \in M_{n \times n}(\mathbb{C})$.
(a) Prove that $A+A^{*}$ and $i\left(A-A^{*}\right)$ are Hermitian matrices.
(b) Prove that A can be written as a linear combination of two Hermitian matrices. These two Hermitian matrices are sometimes called the real and imaginary components of a matrix.
(c) Prove that if A and B are Hermitian then $A B$ is Hermitian if and only if $A B=B A$, i.e., the matrices commute.
(d) Prove that if A and B are Hermitian matrices then $A B+B A$ and $i(A B-B A)$ are also Hermitian matrices.
(e) Prove that if A and B are Hermitian matrices then the matrix C defined by $A B-B A=i C$ is also Hermitian.
6. Suppose $A \in M_{n \times n}(\mathbb{C})$ is both Hermitian and unitary. Prove that its eigenvalues are all ± 1.
7. A matrix $A \in M_{n \times n}(\mathbb{C})$ is called normal if $A A^{*}=A^{*} A$.
(a) Prove that Hermitian matrices and unitary matrices are normal matrices.
(b) Show that the matrix

$$
A=\left[\begin{array}{cc}
0 & -2 \\
2 & 0
\end{array}\right]
$$

is not a symmetric, Hermitian or unitary matrix, but is a normal matrix.
(c) Show that A above has an orthogonal basis of eigenvectors. Are the eigenvalues real numbers?
(d) Show that the following matrix is a normal matrix and has an orthogonal basis of eigenvectors

$$
B=\left[\begin{array}{ll}
1 & i \\
i & 1
\end{array}\right]
$$

