MTH 225: Homework #6

Due Date: March 08, 2024

1. Let $V = C^{\infty}([-1,1])$, i.e., the vector space of infinitely differentiable real valued functions defined on the interval [-1,1]. Define the operation $\langle \cdot, \cdot \rangle : V \times V \mapsto \mathbb{R}$ by

$$\langle f,g \rangle = \int_{-1}^{1} f(x)g(x)dx$$

and let $U \subset V$ be the subspace defined by $U = \text{span}\{1, x, x^2, x^3\}$.

- (a) Show that the operation $\langle \cdot, \cdot \rangle$ defined above is an inner product on V.
- (b) Using the above inner product, find an orthonormal basis for U.
- 2. Suppose $A, B \in M_{n \times n}(\mathbb{C})$ are unitary matrices. Prove that AB is a unitary matrix.
- 3. Suppose that $A = P\Sigma Q^*$ is a singular value decomposition of A. What is a singular value decomposition for A^* ?
- 4. Suppose $A \in M_{n \times n}(\mathbb{C})$.
 - (a) Prove that $\ker(A^*) = (\operatorname{im}(A))^{\perp}$.
 - (b) Prove that $\operatorname{im}(A^*) = (\operatorname{ker}(A))^{\perp}$.
 - (c) Prove that $\ker(A) = (\operatorname{im}(A^*))^{\perp}$.
 - (d) Prove that $\operatorname{im}(A) = (\operatorname{ker}(A^*))^{\perp}$.
 - (e) Let $\vec{b} \in \mathbb{C}^n$. Prove that there exists a $\vec{v} \in \mathbb{C}^n$ that satisfies $A\vec{v} = \vec{b}$ if and only if $\langle b, \vec{w} \rangle = 0$ for all \vec{w} satisfying $A^*\vec{w} = 0$.
- 5. Suppose $A, B \in M_{n \times n}(\mathbb{C})$.
 - (a) Prove that $A + A^*$ and $i(A A^*)$ are Hermitian matrices.
 - (b) Prove that A can be written as a linear combination of two Hermitian matrices. These two Hermitian matrices are sometimes called the real and imaginary components of a matrix.
 - (c) Prove that if A and B are Hermitian then AB is Hermitian if and only if AB = BA, i.e., the matrices commute.
 - (d) Prove that if A and B are Hermitian matrices then AB+BA and i(AB-BA) are also Hermitian matrices.
 - (e) Prove that if A and B are Hermitian matrices then the matrix C defined by AB BA = iC is also Hermitian.
- 6. Suppose $A \in M_{n \times n}(\mathbb{C})$ is both Hermitian and unitary. Prove that its eigenvalues are all ± 1 .
- 7. A matrix $A \in M_{n \times n}(\mathbb{C})$ is called **normal** if $AA^* = A^*A$.
 - (a) Prove that Hermitian matrices and unitary matrices are normal matrices.
 - (b) Show that the matrix

$$A = \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix}$$

is not a symmetric, Hermitian or unitary matrix, but is a normal matrix.

- (c) Show that A above has an orthogonal basis of eigenvectors. Are the eigenvalues real numbers?
- (d) Show that the following matrix is a normal matrix and has an orthogonal basis of eigenvectors

$$B = \begin{bmatrix} 1 & i \\ i & 1 \end{bmatrix}$$