MTH 225: Homework #7

Due Date: March 22, 2024

- 1. Suppose that $A, B \in M_{n \times n}(\mathbb{C})$ are diagonalizable matrices with the same eigenspaces (but not necessarily the same eigenvalues). Prove that AB = BA.
- 2. Compute a unitary diagonalization of each of the following Hermitian matrices (give the diagonal matrix and the unitary matrix) and give the spectral decomposition:

$$A = \begin{bmatrix} 7 & i \\ -i & 7 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 1-i \\ 1+i & 0 \end{bmatrix}.$$

3. Consider the following vectors in \mathbb{C}^4 :

$$\vec{w}_1 = \begin{bmatrix} 1\\i\\-i\\1 \end{bmatrix}, \qquad \vec{w}_2 = \begin{bmatrix} i\\1\\1\\-i \end{bmatrix}, \qquad \vec{w}_3 = \begin{bmatrix} -1\\i\\-i\\1 \end{bmatrix}.$$

- (a) Show that $\langle \vec{w}_1, \vec{w}_2 \rangle = 0$.
- (b) Find an orthonormal basis of the subspace $W = \text{Span}\{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$ of \mathbb{C}^4 .
- 4. Prove the converse of the Spectral Theorem: If $A = UDU^*$ for a unitary matrix U and a diagonal matrix D, whose entries are all real numbers, then A must be a Hermitian matrix.
- 5. Let \vec{u} and \vec{v} be nonzero vectors in \mathbb{C}^n .
 - (a) Find a nonzero eigenvalue of $\vec{u}\vec{v}^*$, and determine its corresponding eigenvector.
 - (b) Determine the unique nonzero singular value σ of $\vec{u}\vec{v}^*$, as well as the corresponding singular vectors \vec{u}_1 and \vec{v}_1 corresponding to σ .
- 6. Let $\{\vec{u}_1, \ldots, \vec{v}_n\}$ be an orthonormal basis of \mathbb{C}^n . Prove that for any $\vec{v} \in \mathbb{C}^n$, one has the equality

$$\|\vec{v}\|^2 = \sum_{j=1}^n |\langle \vec{u}_j, \vec{v} \rangle|^2$$

Hint: Use the projection formula to express \vec{v} as a linear combination of the given basis.

- 7. A matrix $P \in M_{n \times n}(\mathbb{C})$ is called a projection matrix if $P^2 = P$.
 - (a) Show that if $P \in M_{n \times n}(\mathbb{C})$ is a projection matrix and $P\vec{v} \neq \vec{v}$ then $P\vec{v} \vec{v} \in \ker(A)$.
 - (b) Prove that if $P \in M_{n \times n}(\mathbb{C})$ is a projection matrix then I P is also a projection matrix.
 - (c) If $\vec{q} \in \mathbb{C}^n$ satisfies $\|\vec{q}\| = 1$, prove that $\vec{q}\vec{q}^*$ is a projection matrix.
 - (d) If P is projection matrix, prove the following three statements

$$im(I - P) = ker(P),$$

$$im(P) = ker(I - P),$$

$$im(P) \cap ker(P) = \{0\}.$$

8. Consider the following matrices.

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & -2 \\ -3 & 6 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}.$$

- (a) Find the singular value decomposition of A, B, C. You will probably have to use the Gram Matrix to compute these decompositions.
- (b) Compute the closest rank 1 matrices to A, B, and C.