MTH 225: Homework \#7

Due Date: March 22, 2024

1. Suppose that $A, B \in M_{n \times n}(\mathbb{C})$ are diagonalizable matrices with the same eigenspaces (but not necessarily the same eigenvalues). Prove that $A B=B A$.
2. Compute a unitary diagonalization of each of the following Hermitian matrices (give the diagonal matrix and the unitary matrix) and give the spectral decomposition:

$$
A=\left[\begin{array}{cc}
7 & i \\
-i & 7
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
1 & 1-i \\
1+i & 0
\end{array}\right]
$$

3. Consider the following vectors in \mathbb{C}^{4} :

$$
\vec{w}_{1}=\left[\begin{array}{c}
1 \\
i \\
-i \\
1
\end{array}\right], \quad \vec{w}_{2}=\left[\begin{array}{c}
i \\
1 \\
1 \\
-i
\end{array}\right], \quad \vec{w}_{3}=\left[\begin{array}{c}
-1 \\
i \\
-i \\
1
\end{array}\right]
$$

(a) Show that $\left\langle\vec{w}_{1}, \vec{w}_{2}\right\rangle=0$.
(b) Find an orthonormal basis of the subspace $W=\operatorname{Span}\left\{\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}\right\}$ of \mathbb{C}^{4}.
4. Prove the converse of the Spectral Theorem: If $A=U D U^{*}$ for a unitary matrix U and a diagonal matrix D, whose entries are all real numbers, then A must be a Hermitian matrix.
5. Let \vec{u} and \vec{v} be nonzero vectors in \mathbb{C}^{n}.
(a) Find a nonzero eigenvalue of $\vec{u} \vec{v}^{*}$, and determine its corresponding eigenvector.
(b) Determine the unique nonzero singular value σ of $\vec{u} \vec{v}^{*}$, as well as the corresponding singular vectors \vec{u}_{1} and \vec{v}_{1} corresponding to σ.
6. Let $\left\{\vec{u}_{1}, \ldots, \vec{v}_{n}\right\}$ be an orthonormal basis of \mathbb{C}^{n}. Prove that for any $\vec{v} \in \mathbb{C}^{n}$, one has the equality

$$
\|\vec{v}\|^{2}=\sum_{j=1}^{n}\left|\left\langle\vec{u}_{j}, \vec{v}\right\rangle\right|^{2}
$$

Hint: Use the projection formula to express \vec{v} as a linear combination of the given basis.
7. A matrix $P \in M_{n \times n}(\mathbb{C})$ is called a projection matrix if $P^{2}=P$.
(a) Show that if $P \in M_{n \times n}(\mathbb{C})$ is a projection matrix and $P \vec{v} \neq \vec{v}$ then $P \vec{v}-\vec{v} \in \operatorname{ker}(A)$.
(b) Prove that if $P \in M_{n \times n}(\mathbb{C})$ is a projection matrix then $I-P$ is also a projection matrix.
(c) If $\vec{q} \in \mathbb{C}^{n}$ satisfies $\|\vec{q}\|=1$, prove that $\vec{q} \vec{q}^{*}$ is a projection matrix.
(d) If P is projection matrix, prove the following three statements

$$
\begin{gathered}
\operatorname{im}(I-P)=\operatorname{ker}(P), \\
\operatorname{im}(P)=\operatorname{ker}(I-P), \\
\operatorname{im}(P) \cap \operatorname{ker}(P)=\{0\} .
\end{gathered}
$$

8. Consider the following matrices.

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right], \quad B=\left[\begin{array}{cc}
1 & -2 \\
-3 & 6
\end{array}\right], \quad C=\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

(a) Find the singular value decomposition of A, B, C. You will probably have to use the Gram Matrix to compute these decompositions.
(b) Compute the closest rank 1 matrices to A, B, and C.

