MTH 225: Homework \#9

Due Date: April 19, 2024

1. Consider the following quadratic form of real variables $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$:

$$
Q(\vec{x})=Q\left(x_{1}, x_{2}, x_{3}\right)=6 x_{1}^{2}-4 x_{1} x_{2}-2 x_{1} x_{3}+6 x_{2}^{2}-2 x_{2} x_{3}+5 x_{3}^{2}
$$

(a) Express $Q(\vec{x})$ as $\vec{x}^{T} A \vec{x}$ for a symmetric matrix A.
(b) Diagonalize Q (which is equivalent to diagonalizing A) by finding new variables y_{1}, y_{2} and y_{3} (express each in terms of x_{1}, x_{2} and x_{3}), so that there are constants $a, b, c \in \mathbb{R}$ with $Q\left(x_{1}, x_{2}, x_{3}\right)=a y_{1}^{2}+b y_{2}^{2}+c y_{3}^{2}$.
2. Consider the following quadratic form of real variables $\vec{x}=\left(x_{1}, x_{2}\right)$:

$$
Q(\vec{x})=Q\left(x_{1}, x_{2}\right)=5 x_{1}^{2}+4 x_{1} x_{2}+8 x_{2}^{2}
$$

(a) Express $Q(\vec{x})$ as $\vec{x}^{T} A \vec{x}$ for a symmetric matrix A.
(b) Diagonalize Q and use it to graph the ellipse

$$
5 x^{2}+4 x y+8 y^{2}=1
$$

3. For what values of $a, b, c \in \mathbb{R}$ is the the quadratic form

$$
q(x, y, z)=x^{2}+a x y+y^{2}+b x z+c y z+z^{2}
$$

nonnegative for all values of $(x, y, z) \in \mathbb{R}^{3}$.
4. (a) Prove that if $A \in M_{n \times n}(\mathbb{C})$ is positive definite then $\operatorname{det}(A)>0$.
(b) Prove that if $A \in M_{n \times n}(\mathbb{C})$ is positive definite then $\operatorname{Tr}(A)>0$.
(c) Prove that if $A \in M_{2 \times 2}(\mathbb{C})$ is Hermitian and satisfies $\operatorname{Tr}(A)>0$ and $\operatorname{det}(A)>0$ then A is positive definite.
(d) Find a symmetric matrix $A \in M_{3 \times 3}(\mathbb{C})$ with positive determinant and positive trace that is not positive definite.
5. Show that $A \in M_{n \times n}$ and $A^{T} \in M_{n \times n}$ have the same characteristic polynomial.
6. Show that $A \in M_{n \times n}$ and $A^{T} \in M_{n \times n}$ have the same eigenvalues. Find a counterexample to show that they do not necessarily have the same eigenvectors.
7. The refined Gershgorin domain is given by $D_{A}^{*}=D_{A^{T}} \cap D_{A}$. Show that the eigenvalues of A must lie in the refined Gershgorin domain.
8. Show that if A is Hermitian, strictly diagonally dominant, and each diagonal entry is positive, then A is positive defininite.
9. Find an invertible matrix $A \in M_{2 \times 2}(\mathbb{C})$ whose Gershgorin domain contains 0 .
10. For each of the following matrices, (i) find the Gershgorin disks of A and A^{T}, (iI) plot the refined Gershgorin domain in the complex plane, (iii) compute the eigenvalues and confirm the truth of the Gershgorin circle theorem.

$$
A=\left[\begin{array}{cc}
1 & -\frac{2}{3} \\
\frac{1}{2} & -\frac{1}{6}
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
3 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 3
\end{array}\right] \text { and } C=\left[\begin{array}{ccc}
-1 & 1 & 1 \\
2 & 2 & -1 \\
0 & 3 & -4
\end{array}\right] \text { and } D=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 1 & 1 \\
0 & -1 & 1
\end{array}\right]
$$

