MTH 225/225
 Quiz \#1

1. Suppose $u, v, w \in V$ are vectors in a vector space V. Write down the definition of what it means for u, v, w to be linearly independent.

$$
\begin{aligned}
& \text { The only solution to the equation } \\
& \text { is } c_{1} v+c_{2} v+c_{3} w=0 \\
& c_{1}=c_{2}=c_{3}=0 .
\end{aligned}
$$

2. Are the functions $x^{2}+x+2, x^{2}+2 x+1,2 x^{2}+5 x+1$ linearly dependent or independent. You mush show your work to receive full credit, but you do not need to be verbose.

$$
\begin{aligned}
& c_{1}\left(x^{2}+x+2\right)+c_{2}\left(x^{2}+2 x+1\right)+c_{3}\left(2 x^{2}+5 x+1\right)=0 \\
& \Rightarrow c_{1}+c_{2}+2 c_{3}=0 \\
& c_{1}+2 c_{2}+5 c_{3}=0 \\
& 2 c_{1}+c_{2}+c_{3}=0 \\
& \Rightarrow\left[\begin{array}{lll:l}
1 & 1 & 2 & 0 \\
1 & 2 & 5 & 0 \\
2 & 1 & 1 & 0
\end{array}\right]-2 R 1 \Rightarrow\left[\begin{array}{ccc:c}
1 & 1 & 2 & 0 \\
0 & +1 & 3 & 0 \\
0 & -1 & -3 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{cccc:c}
1 & 1 & 2 & 0 \\
0 & 1 & 3 & 10 \\
0 & 0 & 0 & 10
\end{array}\right]
\end{aligned}
$$

Linearly dependent.

