NTH 225 Quiz \#3

1. Suppose $A$ is an $n \times n$ real matrix with $n$ distinct eigenvalues $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$. Find all of the eigenvalues of the matrix $B=A+4 I$, where $I$ is the identity matrix.

If $V_{i}$ is an eigenvector of $A$ with eigenvalue $\lambda_{i}$ then

$$
\Delta \vec{V}_{i}=\lambda_{i} \vec{V}_{i}
$$

Therefore,

$$
\begin{aligned}
(A+4 I) \vec{V}_{i} & =A \vec{V}_{i}+4 I \vec{V}_{i} \\
& =\lambda_{i} \vec{V}_{i}+4 \vec{V}_{i} \\
& =\left(\lambda_{i}+4\right) \vec{V}_{i}
\end{aligned}
$$

Conseyuntly the eigenvalues of $A+4$ I are

$$
\lambda_{i}+4
$$

