MTH 225

Quiz \#5

1. Let $A \in M_{3,3}(\mathbb{C})$ be given by

$$
A=\left[\begin{array}{lll}
0 & 0 & 2 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

(a) Short Answer: Find a basis for $\operatorname{ker}(A)$.

$$
\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\}
$$

(b) Short Answer: Find a basis for $\operatorname{im}(A)$.

$$
\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\}
$$

(c) Short Answer: Find a singular value decomposition of A.

$$
\begin{aligned}
& \vec{U}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \sigma_{1}=2, \overrightarrow{V_{1}}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
& \vec{U}_{2}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \sigma_{2}=1, \overrightarrow{V_{2}}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \\
& \vec{U}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \vec{\sigma}_{3}=0, \overrightarrow{V_{2}}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
\end{aligned}
$$

$$
\Rightarrow U=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1
\end{array}\right], \sum=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right], \quad V=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

