MTH 225
 Quiz \#7

1. Suppose that $\vec{u}, \vec{v} \in \mathbb{C}^{n}$ are orthonormal and let

$$
A=\vec{u} \vec{v}^{*}+\vec{v} \vec{u}^{*} .
$$

(a) Show that A is a Hermitian matrix.

$$
\begin{aligned}
A^{*} & =\left(\vec{u} \vec{v}^{*}+\vec{V} \vec{U}^{*}\right)^{*} \\
& =\left(\vec{U} \vec{V}^{*}\right)^{4}+\left(\vec{V} \vec{U}^{*}+{ }^{*}\right. \\
& =\vec{V} \vec{v}^{*}+\vec{U}^{*} \\
& =A
\end{aligned}
$$

(b) Show that

$$
\begin{aligned}
& A^{2}=\vec{u} \vec{u}^{*}+\vec{v} \vec{v}^{*} . \\
& A^{2}=\left(\vec{U} \vec{v}^{*}+\vec{v} \vec{u}^{*}\right)\left(\Delta \vec{v}^{*}+\vec{v} \vec{u}^{*}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\vec{U} \vec{U}^{*}+\vec{V} \vec{V}^{*}
\end{aligned}
$$

(c) Show that $\vec{u}+\vec{v}$ is an eigenvector of A and find its corresponding eigenvalue.

$$
\begin{aligned}
& A(\vec{u}+\vec{v})=\left(\vec{u} \vec{v}^{*}+\vec{v} \vec{U}^{*}\right)(\vec{u}+\vec{v}) \\
&=\vec{u} \vec{v} \vec{u}+\vec{u} \vec{v} \vec{v}+\vec{v} \vec{u}^{*} \vec{u}+\vec{v} \vec{y} \vec{v}^{0} \\
&=\vec{u}+\vec{v} \\
& \text { Therefore, } \\
& \text { eigenvalue is an eignnretor with coorespunding } \lambda=1 .
\end{aligned}
$$

