MTH 352/652: Homework \#1

Due Date: January 26, 2024

1 Problems for Everyone

1. Sign up for Piazza. I will check the roster for your name.
2. Determine which of the following operators are linear. If an operator is linear, prove it. If an operator is nonlinear find a counterexample, i.e., two functions u, v for which $L[u+v] \neq$ $L[u]+L[v]$ or a function u for which $L[c u] \neq c L[u]$.
(a) $L[u]=u_{x}+x u_{t}$
(b) $L[u]=u_{x}+u u_{t}$
(c) $L[u]=u_{x}+u_{t}^{2}$
(d) $L[u]=u_{x}+u_{t}+1$
(e) $L[u]=\sqrt{1+x^{2}} \cos (t) u_{x}+u_{t x t}-\arctan (x / y) u$
3. For each of the following equations, state the order and whether it is nonlinear, linear homogenous, or linear inhomogeneous. There is no need prove anything for this problem.
(a) $u_{t}-u_{x x}+1=0$
(b) $u_{t}-u_{x x}+x u=0$
(c) $u_{t}-u_{x x t}+u u_{x}=0$
(d) $u_{t t}-u_{x x}+x^{2}=0$
(e) $u_{x}\left(1+u_{x}^{2}\right)^{-1 / 2}+u_{t}\left(1+u_{t}^{2}\right)^{-1 / 2}=0$
(f) $u_{x}+e^{t} u_{t}=0$
(g) $u_{t}+u_{x x x x}+\sqrt{1+u}=0$
4. Verify that $u(x, y)=f(x) g(y)$ is a solution to the $\operatorname{PDE} u u_{x y}=u_{x} u_{y}$ for all pairs of differentiable functions f and g of one variable.
5. Show that the following functions solve the PDE $u_{x x}+u_{y y}=0$:
(a) $u(x, y)=e^{x} \cos (y)$
(b) $u(x, y)=1+x^{2}-y^{2}$
(c) $u(x, y)=x^{3}-3 x y^{2}$
(d) $u(x, y)=\ln \left(x^{2}+y^{2}\right)$
(e) $u(x, y)=\arctan (y / x)$
(f) $u(x, y)=\frac{x}{x^{2}+y^{2}}$
(g) $u(x, y)=\sin (n x)\left(e^{n y}-e^{-n y}\right), n \in \mathbb{R}$
6. Solve the PDE $3 u_{t}+u_{x t}=0$. Hint: Let $v=u_{t}$.
7. Find the general solution to the $\mathrm{PDE} u_{x y}=0$ in terms of two arbitrary functions.
8. Find a function $u(t, x)$ that satisfies the PDE

$$
u_{x x}=0
$$

on the domain $0<x<1, t>0$ subject to the boundary conditions $u(t, 0)=t^{2}$ and $u(t, 1)=1$.
9. Show that the nonlinear equation $u_{t}=u_{x}^{2}+u_{x x}$ can be reduced to the linear equation $w_{t}=w_{x x}$ by changing the variable to $w=e^{u}$.
10. Solve the following initial value problems and graph the solutions at times $t=1,2$ and 3 .
(a) $u_{t}-3 u_{x}=0$ with $u(0, x)=e^{-x^{2}}$
(b) $2 u_{t}+3 u_{x}=0$ with $u(0, x)=\sin (x)$
(c) $u_{t}+2 u_{x}=0$ with $u(-1, x)=x /\left(1+x^{2}\right)$
(d) $u_{t}+u_{x}+u=0$ with $u(0, x)=\arctan (x)$

