MTH 352/652: Homework \#10

Due Date: April 26, 2024

1 Problems for Everyone

1. pg. $\# 283, \# 7.3 .10, \# 7.3 .11, \# 7.3 .12, \# 7.3 .14$.
2. Find the convolution of the functions $f(x)=x$ and $g(x)=e^{-x^{2}}$.
3. Consider the following initial value problem for the heat equation with proportional heat loss:

$$
\begin{aligned}
u_{t} & =D u_{x x}-a u, x \in \mathbb{R}, t>0 \\
u(0, x) & =e^{-x^{2}}
\end{aligned}
$$

where $D>0$ and $a>0$ are constants. Using Fourier transforms find a formula for the solution to this initial value problem.
4. Consider the following initial value problem for the heat equation with advection:

$$
\begin{aligned}
u_{t} & =D u_{x x}-c u_{x}, x \in \mathbb{R}, t>0 \\
u(0, x) & =e^{-x^{2}}
\end{aligned}
$$

where $D>0$ and $c>0$ are constants. Using Fourier transforms find a formula for the solution to this initial value problem.
5. Use Fourier transforms to find bounded solutions to the following differential equation on \mathbb{R} :

$$
-u^{\prime \prime}(x)+u(x)=e^{-|x|}
$$

6. Consider the following initial value problem for the heat equation:

$$
\begin{aligned}
u_{t} & =D u_{x x}, x \in \mathbb{R}, t>0 \\
u(0, x) & =f(x)
\end{aligned}
$$

where $D>0$ is a constant. Show that if $f(x)$ is an odd function then $u(t, x)$ is an odd function in x.

