MTH 352/652: Homework #2

Due Date: February 02, 2024

1 Problems for Everyone

1. Let $c \neq 0$ and suppose u(t, x) solves the following initial value problem

$$u_t + cu_x = 0$$
 and $u(0, x) = f(x)$.

Suppose f is continuous and satisfies $\lim_{|x|\to\infty} f(x) = 0$. Prove that $\lim_{t\to\infty} u(t,x) = 0$.

- 2. Solve the following initial value problems in the region $x \in \mathbb{R}, t > 0$
 - (a) $u_t + xtu_x = 0$ and u(0, x) = f(x)
 - (b) $u_t + xu_x = e^t$ and u(0, x) = f(x)
- 3. Solve the following initial value problems in the region $x \in \mathbb{R}, t > 0$
 - (a) $u_t + xu_x = -tu$ and u(0, x) = f(x)
 - (b) $tu_t + xu_x = -2u$ and u(0, x) = f(x)
 - (c) $u_t + u_x = -tu$ and u(0, x) = f(x)
- 4. Consider the following initial value problems in the region $x \in \mathbb{R}, t > 0$:

$$u_t + u_x + u^2 = 0$$
 and $u(0, x) = f(x)$.

- (a) Find the general solution to this initial value problem.
- (b) Show that if f(x) is bounded and positive, i.e., $0 \le f(x) \le M$, then the solution exists for all t > 0 and

$$\lim_{t \to \infty} u(t, x) = 0.$$

(c) Show that if f(x) is negative, so f(x) < 0 at some $x \in \mathbb{R}$, then the solution blows up in finite time:

$$\lim_{t \to \tau^-} u(t, y) = -\infty$$

for some $\tau > 0$ and some $y \in \mathbb{R}$.

5. Consider the equation

$$u_t + xu_x = 0$$

with the boundary condition $u(t, 0) = \phi(t)$.

- (a) For $\phi(t) = t$, show that no solution exists.
- (b) For $\phi(t) = 1$, show that there are infinitely many solutions.