
MTH 352/652: Homework #3

Due Date: February 09, 2024

1 Problems for Everyone

1. By changing variables to ξ = x− ct and η = x+ ct, show that the wave equation utt = c2uxx
is equivalent to the following PDE:

uξη = 0.

2. Consider the following initial value problem for the wave equation:

utt = c2uxx, x ∈ R, t > 0,

u(0, x) =
4

4 + x2
and ut(0, x) = 0,

where c > 0 is a constant.

(a) What do the initial conditions model in this situation?

(b) Calculate the exact solution u(t, x) to this problem.

(c) Assuming c = 1, plot u(t, x) at t = 0, t = 1, and t = 2.

(d) Calculate limt→∞ u(t, x).

(e) Discuss the qualitative behavior of the solution.

3. Consider the following initial value problem for the wave equation:

utt = c2uxx, x ∈ R, t > 0,

u(0, x) = 0 and ut(0, x) =
4

4 + x2
,

where c > 0 is a constant.

(a) What do the initial conditions model in this situation?

(b) Calculate the exact solution u(t, x) to this problem.

(c) Assuming c = 1, plot u(t, x) at t = 0, t = 1, and t = 2.

(d) Calculate limt→∞ u(t, x).

(e) Contrast how the solution to this initial value problem is different from the solution to
problem #1.

4. pg. 60-62, #2.4.1-#2.4.3

5. The Poisson-Darboux equation is

utt − uxx −
2

x
ux = 0.

By making the substitution, w = xu, solve the Poisson-Darboux equation with the initial data
u(0, x) = 0, ut(0, x) = g(x) where g(x) = g(−x), i.e., g is an even function.
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6. For a classical solution u(t, x) to of the unit speed wave equation utt = uxx the energy and
momentum density are defined by

E(t, x) =
1

2

(
u2t + u2x

)
and P (t, x) = utux,

respectively.

(a) Show that Et = Px and Ex = Pt.

(b) Show that both E(t, x) and P (t, x) satisfy the wave equation.

(c) Show that ∫ ∞
−∞

u(t, x)dx

is constant in time.

7. A spherical wave is a solution of the three-dimensional wave equation of the form u(r, t), where

r =
√
x2 + y2 + z2 is the distance from the origin. The wave equation in this case takes the

form:

utt = c2
(
urr +

2

r
ur

)
u(0, r) = φ(r),

ut(0, r) = ψ(r)

where φ(r), ψ(r) are both even functions of r. By making the change of variables v = ru,
solve the spherical wave equation. What does your solution tell you about the propagation of
spherical waves in three dimensions?

8. Solve the equation uxx − 3uxt − 4utt = 0 with the initial conditions u(0, x) = e−x
2

and
ut(0, x) = 1

1+x2 . Hint: Factor the operator as we did for the wave equation.

2 Choose One of These Problems to Complete

1. In 1858 the first trans-Atlantic telegraph cable was laid down allowing direct communication
between the United States and England. The first message sent by Queen Victoria to Pres-
ident James Buchanan contained 98 words and took 16 hours to communicate. This was an
incredible improvement over the ten days it took to communicate by ships! However, within a
month of its first operation Dr. Wildman Whitehouse (a medical doctor with no real training
in electrical engineering) essentially melted the cable by applying too high of a voltage. The
reaction from the media to this announcement was volatile with many writers hinting that the
line was a hoax. Nevertheless, engineers persisted and a working cable was installed in 1866
that could transmit a blazing eight words per minute!

In this problem our goal is to mathematically understand how signals can be sent along wires.
In particular, our goal is to tune specific electrical properties of the wire to arrive at the wave
equation. As we saw in class, the wave equation is particularly nice for sending signals because
the solutions retain the shape of the initial profile. That is, somebody receiving the signal
would know precisely what the initial shape of the signal is.

(a) We will model the wire as an infinitely long straight line of resistance R ≥ 0, inductance
L ≥ 0, grounding resistance G ≥ 0 and capacitance C ≥ 0. Letting I(t, x) and V (t, x)

2



denote the current and voltage across the wire at position x and time t, the partial
differential equations satisfied by I and V are given by:

Vx = −RI − LIt, (1)

Ix = −GV − CVt. (2)

Show that I can be eliminated from these equations to yield the following equation:

LCVtt + (LG+RC)Vt +RGV = Vxx. (3)

(b) If we define c = 1/
√
LC, a = c2(LG + RC), and b = c2RG then the above equation

becomes:
Vtt + aVt + bV = c2Vxx. (4)

This equation is known as the telegrapher’s equation. If a = 0 and b = 0 this equation
becomes the wave equation. If L > 0 and C > 0 show that if a = 0 and b = 0 then both
R = 0 and G = 0. Why is this an unrealistic case?

(c) By making a substitution of the form V (t, x) = e−λtu(t, x) and by appropriately picking
λ in terms of the constants a, b and c, show that the telegraphers equation can be reduced
to the following partial differential equation:

utt + ku = c2uxx, (5)

where k is a constant that depends on a, b and c.

(d) Show that k = 0 only when RC = LG.

(e) In the case when RC = LG with the initial conditions u(0, x) = f(x) and ut(0, t) = 0,
show that a solution to a solution to the telegrapher’s equation is given by

V (t, x) =
e−λt

2
(f(x− ct) + f(x+ ct)), (6)

What does this solution mean in practical terms? In particular, why is it useful for send-
ing signals?

Remark: This process of tuning the electrical parameters so the RC = LG is called
“Pupinizing” the cable after one of its discoverers Michael Pupin.

2. pg. 62, #2.4.15
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