MTH 352/652: Homework \#4

Due Date: February 23, 2024

1 Problems for Everyone

1. pg. $72, \# 3.12, \# 3.14, \# 3.15, \# 3.16$.
2. Consider the following initial boundary value problem on the domain $[0, \pi]$:

$$
\left\{\begin{array}{l}
t u_{t}=u_{x x}+2 u \\
u(t, 0)=u(t, \pi) \\
u(0, x)=0
\end{array}\right.
$$

By separating variables, show that this initial boundary value problem has an infinite number of solutions.
3. By considering the energy

$$
E(t)=\int_{-\pi}^{\pi} u^{2} d x
$$

prove that solutions to the heat equation

$$
\left\{\begin{array}{l}
u_{t}=u_{x x} \\
u(0, x)=f(x) \\
u(t,-\pi)=u(t, \pi) \\
u_{x}(t,-\pi)=u_{x}(t, \pi)
\end{array}\right.
$$

are unique. Hint: First prove that $E(t)$ is decreasing in time.
4. Let f be a periodic function of period p, i.e., for all $x \in \mathbb{R}, f(x+p)=f(x)$.
(a) Prove that for any $a \in \mathbb{R}$:

$$
\int_{0}^{p} f(x) d x=\int_{a}^{a+p} f(x) d x
$$

Hint: Write $\int_{a}^{a+p} f(x) d x$ as the sum of two integrals (a to p and p to $a+p$) and make an appropriate change of variables.
(b) Prove that for any $a \in \mathbb{R}$:

$$
\int_{0}^{p} f(x+a) d x=\int_{0}^{p} f(x) d x
$$

(c) Interpret these identities graphically.
5. pg. $76 \# 3.2 .1, \# 3.2 .2$.

