MTH 352/652
Quiz \#6

1. Construct a finite difference approximation to the second derivative of a function $f(x)$ using its values at the points $x, x+\Delta x$ and $x-2 \Delta x$.

$$
\begin{aligned}
& f(x+\Delta x)=f(x)+f^{\prime}(x) \Delta x+\frac{f^{\prime \prime \prime}(x)}{2} \Delta x^{2}+\frac{f^{\prime \prime \prime}(x)}{3} \Delta x^{3}+\ldots \\
& f(x-2 \Delta x)=f(x)-2 f^{\prime}(x) \Delta x+2 f^{\prime \prime}(x) \Delta x^{2}+\frac{f^{\prime \prime \prime}(x)}{3!} \Delta x^{3}+\ldots \\
\Rightarrow & 2 f(x+\Delta x)+f(x-2 \Delta x)=3 f(x)+3 f^{\prime \prime}(x) \Delta x^{2}+c f^{\prime \prime \prime}(x) \Delta x^{3}+\ldots \\
\Rightarrow & f^{\prime \prime}(x)=\frac{2 f(x+\Delta x)-3 f(x)+f(x-2 \Delta x)}{3 \Delta x^{2}}+c f^{\prime \prime \prime}(x) \Delta x+\ldots
\end{aligned}
$$

2. What is the order of this approximation?
$\theta(\Delta x)$
