MTH 352/652 Homework #9

Due Date: April 11, 2025

1. Consider the following initial-boundary value problem:

$$u_t = u_{xx},$$

 $u(0,t) = 1,$
 $u(2\pi,t) = 2$
 $u(x,0) = 1.$

- (a) Calculate the steady state solution for this initial-boundary value problem.
- (b) Solve this initial boundary value problem.
- 2. Consider the following initial-boundary value problem for $x \in [0, 1]$:

$$u_t = u_{xx} - u,$$

 $u(0,t)$
 $u(1,t) = 0,$
 $u(x,0) = \sin(3\pi x).$

- (a) Using separation of variables solve this initial-boundary value problem.
- (b) Using your solution, calculate $\lim_{t\to\infty} u(x,t)$.
- (c) Are there any steady state solutions to this equation? If so, what are they?
- 3. Consider the following initial-boundary value problem for $x \in [0, \pi]$:

$$\begin{split} u_{tt} &= u_{xx}, \\ u_x(0,t) &= 0 \\ u_x(\pi,t) &= 0, \\ u(x,0) &= \cos^2(x), \\ u_t(x,0) &= \cos(3x). \end{split}$$

- (a) Solve this initial-boundary value problem. Hint: It might be useful to use trig identities to reduce $\cos^2(x)$.
- (b) Sketch the solution for t = 0, $t = \pi/2$, $t = \pi$, $t = 3\pi/2$, and $t = 2\pi$.
- (c) Describe qualitatively the behavior of the solution.

4. Solve the following initial-boundary value problem for $x \in [0, \pi]$:

$$u_{tt} + u_t = u_{xx},$$

 $u(0,t) = 0$
 $u(\pi,t) = 0,$
 $u(x,0) = \sin^2(x),$
 $u_t(x,0) = 0.$

5. Solve the following boundary value problem on the domain $\Omega = [0,1] \times [0,1]$

$$\Delta u = 0$$

$$u(0, y) = \sin(\pi y)$$

$$u(1, y) = \sin(2\pi y)$$

$$u(x, 0) = \sin(3\pi x)$$

$$u(x, 1) = \sin(4\pi x).$$