Announcements

1. Second exam scheduled for Oct. $28^{\text {th }}$-- practice exams now available -http://www.wfu.edu/~natalie/f03phy113/extrapractice/
2. Thursday - review of Chapters $\mathbf{9 - 1 4}$
3. Today's lecture -

Universal law of gravitation
Gravity near the planet's surface
Gravitational potential energy
Planetary and satelite motion

Newton's law of gravitation:

Vector nature of Gravitational law:

Gravitational force of the Earth

Question:

Suppose you are flying in an airplane at an altitude of $35000 \mathrm{ft} \sim 11 \mathrm{~km}$ above the Earth's surface. What is the acceleration due to Earth's gravity?

$$
\begin{aligned}
& F=\frac{G M_{E} m}{\left(R_{E}+h\right)^{2}}=m a \\
& a=\frac{G M_{E}}{\left(R_{E}+h\right)^{2}}=\frac{6.67 \times 10^{-11} \cdot 5.98 \times 10^{24}}{\left((6.37+0.011) \times 10^{6}\right)^{2}} \mathrm{~m} / \mathrm{s}^{2}=9.796 \mathrm{~m} / \mathrm{s}^{2} \\
& a / g=0.997
\end{aligned}
$$

Attraction of moon to the Earth:

$$
F=\frac{G M_{E} M_{M}}{R_{E M}^{2}}=\frac{6.67 \times 10^{-11} \cdot 5.98 \times 10^{24} \cdot 7.36 \times 10^{22}}{\left(3.84 \times 10^{8}\right)^{2}} \mathrm{~N}=1.99 \times 10^{20} \mathrm{~N}
$$

Acceleration of moon toward the Earth:

$$
\mathrm{F}=\mathrm{M}_{\mathrm{M}} \mathrm{a} \quad \rightarrow \mathrm{a}=1.99 \times 20^{20} \mathrm{~N} / 7.36 \times 10^{22} \mathrm{~kg}=0.0027 \mathrm{~m} / \mathrm{s}^{2}
$$

Stable circular orbit of two gravitationally attracted objects (such as the moon and the Earth)

$$
\begin{aligned}
a & =\frac{v^{2}}{R_{E M}}=\frac{G M_{E}}{R_{E M}^{2}} \\
v & =\omega R_{E M}=\frac{2 \pi}{T} R_{E M} \\
T & =2 \pi \sqrt{\frac{R_{E M}^{3}}{G M_{E}}} \\
& =2 \pi \sqrt{\frac{\left(3.84 \times 10^{8}\right)^{3}}{6.67 \times 10^{-11} \cdot 5.98 \times 10^{24}}} \\
& =2367353.953 \mathrm{~s}=27.4 \text { days }
\end{aligned}
$$

Peer instruction question

In the previous discussion, we saw how the moon orbits the Earth in a stable circular orbit because of the radial gravitational attraction of the moon and Newton's second law: $\mathrm{F}=\mathrm{ma}$, where a is the centripetal acceleration of the moon in its circular orbit. Is this the same mechanism which stabilizes airplane travel? Assume that a typical cruising altitude of an airplane is 11 km above the Earth's surface and that the Earth's radius is 6370 km .
(a) Yes
(b) No

Stable (??) circular orbit of two gravitationally attracted objects (such as the airplane and the Earth)

Newton's law of gravitation:

$$
\mathbf{F}_{12}=\frac{G m_{1} m_{2} \hat{\mathbf{r}}_{12}}{r_{12}^{2}}
$$

Earth's gravity:

$$
\begin{aligned}
& \text { Earth's gravity: } \\
& F=\frac{G M_{E} m}{R_{E}^{2}} \\
& \Rightarrow g=\frac{G M_{E}}{R_{E}^{2}}=\frac{6.67 \times 10^{-11} \cdot 5.98 \times 10^{24}}{\left(6.37 \times 10^{6}\right)^{2}} \mathrm{~m} / \mathrm{s}^{2}=9.8 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Stable circular orbits of gravitational attracted objects:

More details

If we examine the circular orbit more carefully, we find that the correct analysis is that the stable circular orbit of two gravitationally attracted masses is about their center of mass.

Radial forces on m_{1} :

$$
\begin{aligned}
& F_{r 1}=\frac{G m_{1} m_{2}}{\left(R_{1}+R_{2}\right)^{2}}=m_{1} a_{r 1}=m_{1} \frac{v_{1}^{2}}{R_{1}} \\
& v_{1}=\frac{2 \pi R_{1}}{T_{1}} \\
& T_{1}=2 \pi \sqrt{\frac{R_{1}\left(R_{1}+R_{2}\right)^{2}}{G m_{2}}}
\end{aligned}
$$

$$
T_{2} ?
$$

Tangential forces?

Peer instruction question

What is the relationship between the periods T_{1} and T_{2} of the two gravitationally attracted objects rotating about their center of mass? (Assume that $\mathrm{m}_{1}<\mathrm{m}_{2}$.)

What is the physical basis for stable circular orbits?

1. Newton's second law? $\mathbf{F}=m \mathbf{a}=\frac{d \mathbf{p}}{d t}$
2. Conservation of mechanical energy? $E=K+U=$ (const)
3. Conservation of linear momentum? $\mathbf{p}=$ (const)
4. Torqued motion? $\tau=\mathrm{I} \alpha$?
5. Conservation of angular momentum? $\mathbf{L}=($ const $)$

$$
\begin{aligned}
& \boldsymbol{\tau}=\frac{d \mathbf{L}}{d t}=0 \\
& \Rightarrow \mathbf{L}=\text { (const) }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{L}_{1}=\mathrm{m}_{1} \mathrm{~V}_{1} \mathrm{R}_{1} \\
& \mathrm{~L}_{2}=\mathrm{m}_{2} \mathrm{v}_{2} \mathrm{R}_{2}
\end{aligned}
$$

Question:

How are the magnitudes of
L_{1} and L_{2} related?

The potential energy associated with the gravitational force.

Total mechanical energy for circular orbits:

(assume $\mathrm{M} \gg \mathrm{m}$)
$E=1 / 2 m v^{2}+U(r)$
$\frac{m v^{2}}{r}=\frac{G M m}{r^{2}} \Rightarrow v^{2}=\frac{G M}{r}$
$U(r)=-\frac{G M m}{r}$

$$
E=-\frac{G M m}{2 r}
$$

Peer instruction question

What is wrong with the previous analysis?
A. Nothing is wrong. (The description of circular motion due to gravitational attraction is complete.)
B. E depends on r and therefore must not be constant.
C. E can only be constant if r is constant, but it is not obvious why r is constant.
D. Conservation of angular moment will come to the rescue.

Angular momentum: $\mathbf{L}=\mathbf{r} \times \mathrm{mv}$
For circular orbit:

$$
\begin{aligned}
L= & R_{M E} M_{M} v \\
v & =\frac{L}{M_{M} R_{E M}} \\
K & =1 / 2 M_{M} v^{2} \\
& =\frac{L^{2}}{2 M_{M} R_{E M}^{2}}
\end{aligned}
$$

Circular orbit:

Satellites orbiting earth (approximately circular orbits):

$$
T=2 \pi \sqrt{\frac{R_{E}^{3}}{G M_{E}}}\left(1+h / R_{E}\right)^{3 / 2}=5058\left(1+h / R_{E}\right)^{3 / 2} S
$$

$\mathrm{R}_{\mathrm{E}} \sim 6370 \mathrm{~km}$
Examples:

Satellite	$\mathrm{h}(\mathrm{km})$	T (hours)	$\mathrm{v}(\mathrm{mi} / \mathrm{h})$
Geosynchronous	35790	~ 24	6900
NOAA polar orbitor	800	~ 1.7	16700
Hubble	600	~ 1.6	16900
Inter. space station			
	390	~ 1.5	17200

*Link: http://liftoff.msfc.nasa.gov/temp/StationLoc.html

Sample question:
Suppose that the space shuttle $\left(\mathrm{m}=10^{5} \mathrm{~kg}\right)$ was initially in the same orbit as the International space station $\left(\mathrm{h}_{\mathrm{i}}=390 \mathrm{~km}\right)$ and the engines are fired to give it exactly the amount of energy $\Delta \mathrm{W}$ to raise it to the same orbit as the Hubble space telescope $\left(h_{f}=600 \mathrm{~km}\right)$. What is the energy $\Delta \mathrm{W}$?

You can show that the energy of a satellite of mass m in a circular orbit of height h above the Earth's surface is given by:

$$
E_{\text {mech }}=K+U=-\frac{G M_{E}^{m}}{2\left(R_{E}+h\right)}
$$

$$
\left.\left.\Delta W=-\frac{G M_{E} m}{2 R_{E}}\left(\frac{1}{\left(1+h_{f} / R_{E}\right.}\right)^{-} \frac{1}{\left(1+h_{i} / R_{E}\right.}\right)\right)=89,000 J
$$

