PHY 711 - Assignment \#1

August 22, 2006

1. The figure above shows a scattered particle (mass m_{1}) with velocity $\mathbf{v}_{\mathbf{1 f}}$ and angle χ_{1} as measured in the lab frame and velocity $\mathbf{u}_{\mathbf{1 f}}$ and angle θ_{1} as measured in the center of mass frame with \mathbf{V} denoting the velocity of the center of mass. Assuming that the collision of particle m_{1} with the initially stationary particle m_{2} is elastic, show that

$$
\cos \chi_{1}=\frac{\cos \theta_{1}+\frac{m_{1}}{m_{2}}}{\sqrt{\left(1+2 \frac{m_{1}}{m_{2}} \cos \theta_{1}+\left(\frac{m_{1}}{m_{2}}\right)^{2}\right)}}
$$

and

$$
\tan \chi_{1}=\frac{\sin \theta_{1}}{\cos \theta_{1}+\frac{m_{1}}{m_{2}}}
$$

2. Derive the corresponding relationships between θ_{2} and χ_{2}, the angles for the particle of mass m_{2}.
