PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF Olin 103
Plan for Lecture 12:

Continue reading Chapter 3 & 6
1. Hamiltonian formalism
2. Phase space & Liouville’s theorem

3. Modern applications
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Course schedule
(Preliminary schedule -- subject to frequent adjustment.)
Date F&W Reading | Topic |Assignment | Due
1 [Mon, 8/26/2019 |Chap. 1 Introduction #1 8/30/2019
2 |Wed, 8/28/2019|Chap. 1 Scattering theory #2 9/02/2019
3 ||Fri, 8/30/2019 |Chap. 1 Scattering theory #3 9/04/2019
4 |Mon, 9/02/2019 |Chap. 1 Scattering theory #4 9/06/2019
5 |Wed, 9/04/2019|Chap. 2 Non-inertial coordinate systems |#5 9/09/2019
6 |Fri, 9/06/2019 |Chap. 3 (Calculus of Variation #6 9/11/2019
7 |Mon, 9/9/2019 |Chap. 3 (Calculus of Variation H#1 9/13/2019
8 |Wed, 9/11/2019 |Chap. 3 Lagrangian Mechanics
9 |Fri, 9/13/2019 |Chap. 3 Lagrangian Mechanics #8 9/16/2019
10|Mon, 9/16/2019 |Chap. 3 &6 |Constants of the motion #9 9/20/2019
11 |Wed, 9/18/2019|Chap. 3 &6 |Hamiltonian equations of motion
» 12|Fri, 9/20/2019 |Chap.3 &6 |Liouville theorm #10 9/23/2019
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PHY 711 -- Assignment #10

Sept. 20, 2019
Continue reading Chapters 3 and 6 in Fetter & Walecka.
1. Choose one of the papers distributed in class, by H. C. Andersen or by S. Nose' and derive
to your satisfaction the Euler-Lagrange equations of motion, the Hamiltonian, and the

canonical equations of motion for the constant pressure or constant temperature
simulations, respectively.
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Hamiltonian formalism

H=H({g,O}{p,O}h)

Canonical equations of motion

dg, OH
i o,
dp, OH
o,
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Phase space

Phase space is defined at the set of all

coordinates and momenta of a system :

(lg. O} {p, 0})

For a d dimensional system with N particles,

the phase space corresponds to 2dN degrees of freedom.

Liouville’s Theorem (1838)

The density of representative points in phase
space corresponding to the motion of a system of
particles remains constant during the motion.

Denote the density of particles in phase space: D = D({q” (t)}, {p[T (t)}, t)

dD oD .  dD . oD

== b, |t
dt T\ 0q, p, ot

. N dD

According to Liouville's theorem : " =0




D _,
dt

Importance of Liouville’s theorem to statistical
mechanical analysis:

In statistical mechanics, we need to evaluate the
probability of various configurations of particles.
The fact that the density of particles in phase
space is constant in time, implies that each point
in phase space is equally probable and that the
time average of the evolution of a system can be
determined by an average of the system over
phase space volume.
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Modern usage of Lagrangian and Hamiltonian formalisms

J. Chem. Physics 72 2384-2393 (1980)

Molecutar dyr ics simulations at constant pressure and/or
temperature®

Hans C. Andersen

Department of Chemistry, Stanford University, Stanford, California 94305
(Received 10 July 1979; accepted 31 October 1979)

In the molecular dynamics simulation method for fuids, the equations of motion for a collection of
particles in 3 fixed volume are solved numecicalis. The encrgy, volume, and number of particles arc
constan for a particular simulation, and it is assumed that time averages of properties of the simulated
fluid are equal 1o microcananical ensemble averges of the same propertics. In some situations. it i
desirabie to perform simulations of a fluid for particular values of temperature and/or pressure ot under
conditions in which the energy and voiume of the uid can fluctuate. This paper proposes and discusses
theee methods for performing molecular dynamics simulations under Sonditions of constant temperature
and/or pressure, tather than constant energy and volume. For these three methods, it 1 shown that time
averages of properties of the simolated fluid are equal 1o averages over the isoenthalpic-isoaric,
canonical, and isothermal-isobaric ensembies. Each method is a way of describing the dynamics of &
certain number of particles fn a volume clement of & fluid while taking into account the influence of
surrounding particles in changing the energy and/or density of the simulated volume element. The
influence of the surroundings is taken into account without introducing unwanted surface effects
Examples of situations where these methods may be useful ase discussed.
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“Molecular dynamics” is a subfield of computational
physics focused on analyzing the motions of atoms in
fluids and solids with the goal of relating the atomistic
and macroscopic properties of materials. Ideally
molecular dynamics calculations can numerically
realize the statistical mechanics viewpoint.

Imagine that the generalized coordinates {qa (t)} represent
N atoms, each with 3 spacial coordinates:
L=L({q,(0}.{¢,®}.t)=T-U

For simplicity, it is assumed that the potential interaction

is a sum of pairwise interactions:

Ue") = § wiry} . 2.1
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L=L{frOL{EO})= 3 4m,

i

B —ZuQr, —rj‘)
=>From this Lagrangian, can find the 3N coupled
2nd order differential equations of motion and/or
find the corresponding Hamiltonian, representing
the system at constant energy, volume, and
particle number N (N,V,E ensemble).
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Lagrangian and Hamiltonian forms
L=L({rO} {50} = X 4m [ = Xu(

Euler-Lagrange equations:

d’r, T -T
i ol i T

m; d? - Zu (rr r/‘)
i<j l‘,—l'/

I,

i

-
i J

Hamiltonian formulation:

p, =mf,
2
P
=3B ()
T 2m; G

Canonical equations:
dr, dj r—r

i _Pi p’=*Zu'(r,—r/‘) [
dt  m, dt < -r ‘

i j
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Digression on numerical evaluation of differential equations
Example differential equation (one dimension);
% =10 Let t=nh (n=123..)
t
x,=x(nh)  f, = f(nh)

Euler's method :

2 I
Ky = I, 'H‘L,.

Vo =V, 1, x :

Velocity Verlet algorithm :

1, _‘I
X, =X, +hv, +§h Ja .-Q | t
1 .
Vi1 =V, +5h(fn + .fn+l)
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H. C. Andersen wanted to adapt the formalism for
modeling an (N,V,E) ensemble to one which could
model a system at constant pressure (P).

@p
E>
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V constant ﬁ
P constant,
V variable
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PV contribution to

Andersen's clever transformation : potential energy
Letp, =r,/Q"

I,

il

= Ln @K EO) =D m
= Lllp, )} 16,(01,0,0)= 0" 1m p,

lfqur,fr]‘)
Tk

1/3

p |} 200" a0

kinetic energy of
“balloon”
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1/3

—p |+ M0 a0

£=1ll0,0}9.0,0.0)=0" o - Sl

oL 2/3 ¢

”fzapl_mQ P
oL .
M= % =MQ
1= 3 s Tl -0 ) a0
2m Q23 = VYoM
d,__m a_n
dt mQ™” dt M
dam; _ . PP
" _7Q”32_u (Q” p. - D l j‘

|-a

dIl
7’722mQ23 3szu( ‘) i
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Relationship between system representations

Scaled Original
o = )
%) = ()
7 /0" = p,
Equations of motion in “original” coordinates:
d _p 1 dwy
dt  m, 3' dt
ap, _ N . )1 dInV
dr r,‘u Qr, r") 3P
v 1(25pp ! .
M :‘“7[527,‘5%%-% er—n\)]
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Physical interpretation:
a < Imposed (target) pressure

1(2<pp 1 .
V{iZTfEZ o

Jj<

LT, D] < Internal pressure of system
Time dependence

v 1{2¢p,-p, |1
M =—a+—|=-) —-=

Lo ‘)J
Averaged over many time steps:

dv 1{2 . 1
<M dtz>=0 = a=<;[§2p'7’p’7§;rrir/%(r'irf‘)]>

pfr/ﬁ/'(

9/20/2019 PHY 711 Fall 2019 — Lecture 12 17

17

Example simulation for NPT molecular dynamics
simulation of Li,O using 1500 atoms with 6=0

——

B & % & K § % & N

é

«
S T LT L Pair interaction potential
B % % % % B % & & W

«
. . . . . . . . . . C qq

% &% & &% & %% % &N 7/ i i1
S R S A R e X

L Y T T T T T Ty I

LI ST K ST R SR N ™

& % % % & & &% % & & % Use LAMMPS code

“ e e e e & w & http//LAMMPS.sandia.gov

N & &% % % & &% % % & W
LI B B T I B T TN IR 1
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MoLECULAR PHysIcs, 1984, VoL. 52, No. 2, 255-268

A molecular dynamics method for simulations in the
canonical ensemblet

by SHUICHI NOSE}
Division of Chemistry, National Research Council Canada,
Ottawa, Ontario, Canada K1A 0R6

(Received 3 October 1983 ; accepted 28 November 1983)

A molecular dynamics simulation method which can generate configura-
tions belonging to the canonical (T, ¥, N) ensemble or the constant
temperature constant pressure (T, P, N) ensemble, is proposed. The
physical system of interest consists of N particles (f degrees of freedom), to
which an external, macroscopic variable and its conjugate momentum are
added. This device allows the total energy of the physical system to
fluctuate. The equilibrium distribution of the energy coincides with the

Nose"s Lagrangian:
1 L, 1.
L({r.},s.{k},8) = EZ:ml.szri2 +5Qsz —¢{r}) - (f + DT, Ins
" " fictitious mass
velocity scaling

Equations of motion: d o
— (ms? b)) = ——,
dt (mls i"l-) ariY

= 5 +1)RT,
Os= ;misriﬂ—(f“@,




Time averaged relationships

0§ =Y msi} _U Dk,

i N

(05)=0 = <Zmi.mz> :<M>

S
< g m:sz i-,2> =(f+ ])kTeq<%.>
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Time averaged relationships

< g m:sz i-,2> =(f+ ])kTeq<%.>

Hamiltonian

#,= 30 +¢(")+2&92+(f+1)kTeqlns,

T 2m;s?

where p, = m.s’r, p, =05
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In statistical mechanics, the thermodynamic functions can be analyzed
in terms of a partition function. A canonical partition function for a system
with N particles at a temperature 7, can be determined from the phase space

eq

integral:

_ b e ane v —a(ELEDAT,
ZL,—N!J‘d rd'pe

—
where Z((F},{(B,})= 32—+ ()

For such a canonical distribution the average value of a quantity F({¥}.{p,})
is given by

1 3N— 3N ~F (T LB AT, +\ I
(FATHBD), =5y a7 a5 7P (e (o )

Nose’ was able to show that his effective Hamiltonian
well approximates such a canonical distribution.
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Relationship between Nose”s partition function and
the canonical partition function:

1 (2=0\'"
l J
|

constant factor

Some details:
Starting with partition for microcanonical ensemble:

P P, / _ b
Z=—=fdp,Jdsfdpfdrs| ¥ oyt r) 45+ (f+ 1R Ins—F ).
Nl \ ' 2ms 2 }
201 PHY 711 Fall 2019 - Lect 1 2
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Zeg fdp,fdsfpfars( y 2 P+ AT 1
i s P ;2mis2+¢(r)+E+U+) ea ns-E),

Change variables: p, = b T=r
s

=2 2
z :%jdpx ds d*Vp d*F xf5[2%+¢({F})+ 2PQ +(f +DKT, Ins —E]

S(s—s,)
Note that |ds 5(g(s))=|ds 0
I J [g'(s) |
. P P -
where (f + kT, Ins, = E - 20 2om -4({x})
2 =2
)2 P _
E R S i S
25 2, T
Sy = exp N
(f +DiT,,
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When the dust clears --

Z=L (ZLQ)”! exp (EfkTeq)z‘;-
( a
l J

constant factor

= The Nose’ ensemble should sample phase
space in the same way as does the canonical
ensemble at Ty
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From LAMMPS simulation (using modified Nose’ algorithm)

330 T T T

2dat 023 ——
325 R
320 g
315 g
310 E
—~ 305 g
X g
= s R
290 g
285 g
280 E
275 - -
0 100 200 300 400 500 500
t(ps)
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