PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF Olin 103

Plan for Lecture 31:

Chapter 10 in F & W: Surface waves

- 1. Water waves in a channel
- 2. Wave-like solutions; wave speed

11/13/2019

PHY 711 Fall 2019 -- Lecture 31

1

21	Fri, 10/18/2019	Chap. 7	Contour integrals; Exam due	#15	10/23/2019
22	Mon, 10/21/2019	Chap. 7	More about contour integrals		
23	Wed, 10/23/2019	Chap. 5	Rigid body motion	#16	10/25/2019
24	Fri, 10/25/2019	Chap. 5	Rigid body motion	#17	10/28/2019
25	Mon, 10/28/2019	Chap. 8	Elastic two-dimensional membranes	#18	11/01/2019
26	Wed, 10/30/2019	Chap. 9	Mechanics of 3 dimensional fluids		
27	Fri, 11/01/2019	Chap. 9	Fluid mechanics	#19	11/04/2019
28	Mon, 11/04/2019	Chap. 9	Sound waves		
	Wed, 11/06/2019	No class	NAWH out of town		
29	Fri, 11/08/2019	Chap. 9	Sound waves; Project Topic due	#20	11/11/2019
30	Mon, 11/11/2019	Chap. 9	Non-linear waves and shocks	#21	11/15/2019
31	Wed, 11/13/2019	Chap. 10	Surface waves in water	#22	11/18/2019
32	Fri, 11/15/2019				
33	Mon, 11/18/2019				
34	Wed, 11/20/2019				
35	Fri, 11/22/2019				
36	Mon, 11/25/2019				
	Wed, 11/27/2019		Thanksgiving holiday		
	Fri, 11/29/2019		Thanksgiving holiday		
	Mon, 12/2/2019		Presentations I		
	Wed, 12/4/2019		Presentations II		
	Fri, 12/6/2019		Presentations III		

2

Physics of incompressible fluids and their surfaces

Reference: Chapter 10 of Fetter and Walecka

11/13/2019

PHY 711 Fall 2019 - Lecture 31

4

Consider a container of water with average height h and surface h+ $\zeta(x,y,t)$; (h \longleftrightarrow \gt{z}_0 on some of the slides)

Atmospheric pressure is in equilibrium with the surface of water

 $p_0 = \rho g(h + \zeta)$ Here ρ represents density of water

5

Euler's equation for incompressible fluid:

$$\frac{d\mathbf{v}}{dt} = f_{applied} - \frac{\nabla p}{\rho} = -g\hat{\mathbf{z}} - \frac{\nabla p}{\rho}$$

Assume that $v_z \ll v_x, v_y$ $\Rightarrow -g - \frac{1}{\rho} \frac{\partial p}{\partial z} \approx 0$

 $\Rightarrow p(x, y, z, t) = p_0 + \rho g(\zeta(x, y, t) + h - z)$ within the

Horizontal fluid motions (keeping leading terms):

$$\frac{dv_x}{dt} \approx \frac{\partial v_x}{\partial t} = -\frac{1}{\rho} \frac{\partial p}{\partial x} = -g \frac{\partial \zeta}{\partial x}$$

$$\frac{dv_{y}}{dt} \approx \frac{\partial v_{y}}{\partial t} = -\frac{1}{\rho} \frac{\partial p}{\partial y} = -g \frac{\partial \zeta}{\partial y}$$

PHY 711 Fall 2019 - Lecture 31

Consider a surface $\zeta(x,t)$ wave moving in the x-direction in a channel of width b(x) and height h(x):

7

From continuity condition: $\int_{\zeta(x,t)} b(x) \frac{\partial \zeta}{\partial t} = -\frac{\partial}{\partial x} \Big(h(x)b(x)v(x,t) \Big)$ $h(x) \xrightarrow{v(x+dx,t)} \text{Example (Problem 10.3):}$ $b(x) = b_0 \qquad h(x) = \kappa x$ $b_0 \frac{\partial \zeta}{\partial t} = -\frac{\partial}{\partial x} ((\kappa x) b_0 v(x, t)) \qquad \text{From Newton-Euler equation:}$ $\frac{\partial \zeta}{\partial t} = -\kappa \left(v + x \frac{\partial v}{\partial x} \right) \qquad \qquad \frac{dv}{dt} \approx \frac{\partial v}{\partial t} = -g \frac{\partial \zeta}{\partial x}$

8

$$\frac{\partial \zeta}{\partial t} = -\kappa \left(v + x \frac{\partial v}{\partial x} \right) \implies \frac{\partial^2 \zeta}{\partial t^2} = -\kappa \left(\frac{\partial v}{\partial t} + x \frac{\partial^2 v}{\partial x \partial t} \right)$$

$$\frac{\partial v}{\partial t} = -g \frac{\partial \zeta}{\partial x} \implies \frac{\partial^2 \zeta}{\partial t^2} = \kappa g \left(\frac{\partial \zeta}{\partial x} + x \frac{\partial^2 \zeta}{\partial x^2} \right)$$
It can be shown that a solution can take the form:

Note that $J_0(u)$ satisfies the equation: $\left(\frac{d^2}{du^2} + \frac{1}{u}\frac{d}{du} + 1\right)J_0(u) = 0$

Therefore, for
$$u = \frac{2\omega}{\sqrt{\kappa g}}\sqrt{x}$$

$$\left(x\frac{d^2}{dx^2} + \frac{d}{dx}\right)J_0(u) = \frac{\omega^2}{\kappa g}\left(\frac{d^2}{du^2} + \frac{1}{u}\frac{d}{du}\right)J_0(u) = -\frac{\omega^2}{\kappa g}J_0(u)$$
11/13/2019 PHY 711 Fall 2019 - Lecture 31

Example continued
$$\frac{\partial^2 \zeta}{\partial t^2} = \kappa g \left(\frac{\partial \zeta}{\partial x} + x \frac{\partial^2 \zeta}{\partial x^2} \right)$$

$$\Rightarrow \zeta(x,t) = CJ_0 \left(\frac{2\omega\sqrt{x}}{\sqrt{\kappa g}} \right) \cos(\omega t)$$
 Check:
$$-\omega^2 CJ_0 \left(\frac{2\omega\sqrt{x}}{\sqrt{\kappa g}} \right) \cos(\omega t) = \kappa g \left(\frac{\partial}{\partial x} + x \frac{\partial^2}{\partial x^2} \right) CJ_0 \left(\frac{2\omega\sqrt{x}}{\sqrt{\kappa g}} \right) \cos(\omega t)$$

Example with <u>b</u> and h constant -- continued

Continuity condition for flow of incompressible fluid:

$$\frac{\partial \zeta}{\partial t} + h \nabla \cdot \mathbf{v} = 0$$

From horizontal flow relations: $\frac{\partial \mathbf{v}}{\partial t} = -g\nabla\zeta$

Equation for surface function: $\frac{\partial^2 \zeta}{\partial t^2} - gh\nabla^2 \zeta = 0$

11/13/2019

PHY 711 Fall 2019 -- Lecture

13

For uniform channel:

Surface wave equation:

$$\frac{\partial^2 \zeta}{\partial t^2} - c^2 \nabla^2 \zeta = 0$$

$$c^2 = gh$$

More complete analysis finds:

$$c^2 = \frac{g}{k} \tanh(kh)$$
 where $k = \frac{2\pi}{\lambda}$

11/13/2019

PHY 711 Fall 2019 -- Lecture 31

14

More details: -- recall setup -Consider a container of water with average height h
and surface h+ζ(x,y,t)

Equations describing fluid itself (without boundaries)

Euler's equation for incompressible fluid:

$$\frac{d\mathbf{v}}{dt} = \frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = \frac{\partial \mathbf{v}}{\partial t} + \nabla \left(\frac{1}{2}v^2\right) + \mathbf{v} \times \left(\nabla \times \mathbf{v}\right) = -\nabla U - \frac{\nabla p}{\rho}$$

Assume that $\nabla \times \mathbf{v} = 0$ (irrotational flow) $\Rightarrow \mathbf{v} = -\nabla \Phi$

$$\Rightarrow \nabla \left(-\frac{\partial \Phi}{\partial t} + \frac{1}{2}v^2 + U + \frac{p}{\rho} \right) = 0$$

$$\Rightarrow -\frac{\partial \Phi}{\partial t} + \frac{1}{2}v^2 + U + \frac{p}{\rho} = \text{constant (within the fluid)}$$

For the same system, the continuity condition becomes

$$\nabla \cdot \mathbf{v} = -\nabla^2 \Phi = 0$$

11/13/2019

PHY 711 Fall 2019 - Lecture 31

16

17

Full equations: Within fluid: $0 \le z \le h + \zeta$ $-\frac{\partial \Phi}{\partial t} + \frac{1}{2}v^2 + g(z-h) = \text{constant}$ (We have absorbed p_0 in "constant") $-\nabla^2 \Phi = 0$ At surface: $z = h + \zeta$ with $\zeta = \zeta(x, y, t)$ $\frac{d\zeta}{dt} = \frac{\partial \zeta}{\partial t} + v_x \frac{\partial \zeta}{\partial x} + v_y \frac{\partial \zeta}{\partial y}$ where $v_{x,y} = v_{x,y}(x, y, h + \zeta, t)$ Linearized equations: For $0 \le z \le h + \zeta$: $-\frac{\partial \Phi}{\partial t} + g(z-h) = 0$ $-\nabla^2 \Phi = 0$ At surface: $z = h + \zeta$ $\frac{d\zeta}{dt} = \frac{\partial \zeta}{\partial t} = v_z(x, y, h + \zeta, t)$ $-\frac{\partial \Phi(x, y, h + \zeta, t)}{\partial t} + g\zeta = 0$

For simplicity, keep only linear terms and assume that horizontal variation is only along *x*:

For
$$0 \le z \le h + \zeta$$
: $\nabla^2 \Phi = \left(\frac{\partial^2}{\partial z^2} + \frac{\partial^2}{\partial x^2}\right) \Phi(x, z, t) = 0$

Consider and periodic waveform: $\Phi(x, z, t) = Z(z)\cos(k(x - ct))$

$$\Rightarrow \left(\frac{d^2}{dz^2} - k^2\right) Z(z) = 0$$

Boundary condition at bottom of tank: $v_z(x,0,t) = 0$

$$\Rightarrow \frac{dZ}{dz}(0) = 0 Z(z) = A\cosh(kz)$$

11/13/2019

PHY 711 Fall 2019 - Lecture 31

19

For simplicity, keep only linear terms and assume that horizontal variation is only along x – continued:

At surface:
$$z = h + \zeta$$
 $\frac{\partial \zeta}{\partial t} = v_z(x, h + \zeta, t) = -\frac{\partial \Phi(x, h + \zeta, t)}{\partial z}$

$$-\frac{\partial\Phi(x,h+\zeta,t)}{\partial t}+g\zeta=0$$

$$-\frac{\partial^{2}\Phi(x,h+\zeta,t)}{\partial t^{2}}+g\frac{\partial\zeta}{\partial t}=-\frac{\partial^{2}\Phi(x,h+\zeta,t)}{\partial t^{2}}-g\frac{\partial\Phi(x,h+\zeta,t)}{\partial z}=0$$

For
$$\Phi(x,(h+\zeta),t) = A\cosh(k(h+\zeta))\cos(k(x-ct))$$

$$A\cosh(k(h+\zeta))\cos(k(x-ct))\left(k^2c^2-gk\frac{\sinh(k(h+\zeta))}{\cosh(k(h+\zeta))}\right)=0$$

$$\Rightarrow c^{2} = \frac{g}{k} \frac{\sinh(k(h+\zeta))}{\cosh(k(h+\zeta))}$$

11/13/2019

20

For simplicity, keep only linear terms and assume that horizontal variation is only along x – continued:

$$c^{2} = \frac{g}{k} \frac{\sinh(k(h+\zeta))}{\cosh(k(h+\zeta))} = \frac{g}{k} \tanh(k(h+\zeta))$$

Assuming
$$\zeta \ll h$$
: $c^2 = \frac{g}{k} \tanh(kh)$ $\lambda = \frac{2\lambda}{k}$

For simplicity, keep only linear terms and assume that horizontal variation is only along x – continued:

$$c^2 \approx \frac{g}{k} \tanh(kh)$$
 For $\lambda >> h$, $c^2 \approx gh$

 $\Phi(x, z, t) = A \cosh(kz) \cos(k(x - ct))$

$$\zeta(x,t) = \frac{1}{g} \frac{\partial \Phi(x,h+\zeta,t)}{\partial t} \approx \frac{kc}{g} A \cosh(kh) \sin(k(x-ct))$$

Note that for $\lambda >> h$, $c^2 \approx gh$

(solutions are consistent with previous analysis)

11/13/2019

PHY 711 Fall 2019 - Lecture 31

22

