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Plan for Lecture 32:

Chapter 10 in F & W:

Surface waves

« Comment on Bessel functions (HW #21)

* Summary of linear
solutions

surface wave

* Non-linear contributions and soliton

~ solutions
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Comment on Bessel functions
https://dimf.nist.gov/

NIST Digital Library of Mathematical Functions

Project News
2019-09-15 DLMF Update; Version 1.0.24
2019-06-15 DLMF Update; Version 1.0.23
2019-03-15 DLMF Updae Version 1.0.22
2018-12-15 DLMF Update; Version 10.21
More news

Foreword
Preface
Mathematical Introduction
1 Algebraic and Analytic Methods
2 Asymptotic Approximations
3 Numerical Methods
4 Elementary Functions
5 Gamma Function
6 Exponential, Logarithmic, Sine, and Cosine
Integrals
7 Error Functions, Dawson’s and Fresnel
Integrals
8 Incomplete Gamma and Related Functions
9 Airy and Related Functions
10 Bessel Functions
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20 Theta Functions

21 Multidimensional Theta Functions

22 Jacobian Elliptic Functions

23 Weierstrass Elliptic and Modular Functions
24 Bernoulli and Euler Polynomials

25 Zeta and Related Functions

26 Combinatorial Analysis

27 Functions of Number Theory

28 Mathieu Functions and Hill’s Equation
29 Lamé Functions

30 Spheroidal Wave Functions

31 Heun Functions

32 Painlevé Transcendents

33 Coulomb Functions

34 3, 6j, 9j Symbols
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§10.2(i) Bessel’s Equation

10.2.1

2ﬂ+ d7w+ 2 _ 2w =0
o ptEy (Z2—v»)Hw=0.

=>Note that, in principle, solutions for +v and —v are related;
and for integer v they are not independent. The “standard”

conventions are given as follows.

§10.4 Connection Formulas

Other solutions of (10.2.1) include ]7‘,(2). Y,v(z)‘ H(_lﬁ(z} and HEZJ(Z).

10.4.1
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J1-(2) = DT, (=)
Y_p(2) = (~1)"n(2).
HE)(2) = (-0 "H(2),




This material is covered in Chapter 10 of
your textbook using similar notation.
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29 |Fri, 11/08/2019 ||Chap. 9 Sound waves; Project Topic due #20 11/11/2019

30 Mon, 11/11/2019 ||Chap. 9 Non-linear waves and shocks #21 11/15/2019
31 |Wed, 11/13/2019 [Chap. 10 Surface waves in water #22 11/18/2019

Fri, 11/15/2019 |[Chap. 10 Surface waves -- non linear effects

1

@
<

Mon, 11/18/2019

34 \Wed, 11/20/2019

35 |Fri, 11/22/2019

36 |Mon, 11/25/2019
\Wed, 11/27/2019 Thanksgiving holiday
Fri, 11/29/2019 Thanksgiving holiday
Mon, 12/2/2019 Presentations |
\Wed, 12/4/2019 Presentations I
Fri, 12/6/2019 Presentations Il
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Consider a container of water with average height h and
surface h+{(x,y,t)
Atmospheric pressure p, is in equilibrium at the surface
Po
h
X
6




AT A AT TR EA LAY R AT,
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Euler's equation for incompressible fluidFor irrotational flow —- v =-V®

dav Vp Vp
o = J applica ’7 =-VU ’7 Linearized equation: V [—%+ g(z—h)+ %J =0
Continuity equation within the fluid

8—p+V-(pv):0 = V.v=0

Atsurface: z=h+¢ ,@+g§+pn:0
ot P
ot
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Keep only linear terms and assume that horizontal variation is
only along x:

2 2
For 0<z<h+(: V= a,Jra—z D(x,z,t)=0
0z" Ox

Consider and periodic waveform: ®(x,z,7) = Z(z) cos(k(x —ct))

d N
:[E—k jZ(z)fo

Boundary condition at bottom of tank:  v_(x,0,¢) =0

:‘;—Z(o)=0 Z(z) = Acosh(kz)
o D (x,h+ ¢
Atsurface: z=h+¢ %:v,(x,h+§,t):—78 (xh+¢y0)
ot : Oz
Also: _w+g§+&:0
ot P
762®(x’h+§’t)+ 675_762®(x,h+§,t)7 ad)(x,h+§,t)_
Lo fa Tt E
8

Velocity potential: ~ ®(x,z,t) = Acosh(kz)cos (k(x—ct))
Atsurface:  ®(x,(h+¢),0) = Acosh(k(h+¢))cos(k(x—cr))

L, inh(k(h+¢))
Acosh(k(h+C))COS(k(X—C’))[k ¢ ‘g"WJzo

L 8SE(REE) g
k cosh(k(h+C)) k

Note that this solution represents a pure plane wave. More
likely, there would be a linear combination of wavevectors k.
Additionally, your text considers the effects of surface
tension. In this lecture, we will focus on the effects of the
non-linear effects of Euler and continuity equations.
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Surface waves in an incompressible fluid

General problem
including

non-linearitieg

)
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Within fluid: 0<z<h+¢

o,
_§+zv +g(z—h) = constant D =D(x,y,z,t)
-V®=0 v=v(x,y,2,0) ==VO(x,y,z,1)
Atsurface: z=h+¢ with ¢ = ¢ (x,y.1)
£=6£+VX8£+VL6£=7M where v, =v,_ (x,y,h+¢,1)

dt ot ox "oy 0z ! !
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Further simplifications; assume trivial y - dependence

(D=(D(x,z,t) é’=§(x,t)
Within fluid : 0<z<h+g
od dg
At surface : z=h+( t)=—"—"=—2
surface v.(x,z=h+¢,1) o dt
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Non-linear effects in surface waves:

% :
SR ATATAT A AR

z=0 X
Dominant non-linear effects = soliton solutions
31, x—ct
x,t)=n, sech?| ,[—> ——— = constant
¢ (x,0)=mn, Y o
gh o
where c = [—2—— ~\/gh| 1+
1=n,/h 8 ( 2h ]

12
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Detailed analysis of non-linear surface waves
[Note that these derivations follow Alexander L. Fetter and
John Dirk Walecka, Theoretical Mechanics of Particles and
Continua (McGraw Hill, 1980), Chapt. 10.]
We assume that we have an incompressible fluid: p = constant

Velocity potential: ®(x,z,1); v(x,z,t)=-VD(x,z,t)

The surface of the fluid is described by z=h+{(x,t). Itis
assumed that the fluid is contained in a structure
(lake, river, swimming pool, etc.) with a structureless
bottom defined by the z = 0 plane and filled to an
equilibrium height of z = h.
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Defining equations for ®(x,z,t) and ¢(x,t)
where 0 <z < h+ ¢ (x,1)
Continuity equation:

O’D(x,z,t)  O’D(x,z,1)

2 + 2 =

ox Oz

Bernoulli equation (assuming irrotational flow) and gravitation
potential energy

oD,z | 1 (ad)(x,z,t)jz+(6<D(x,z,t)jz v gz—)=0
ot 2 ox oz € o
) )
Vx VZ

Viv=0 =

0
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Boundary conditions on functions —

Zero velocity at bottom of tank:
0D (x,0,1)
oz -
Consistent vertical velocity at water surface
_dg _
z=h+{ dl

0.

o¢
v-V§+—=
¢ ot
L, 9,0
Tox Ot
- 0D(x,z,1) 4 0D(x,z,1) G (x,1) 6§(x,t)‘
oz ox ox o | e

v, (x,z,t)

=0
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Analysis assuming water height z is small relative to
variations in the direction of wave motion (x)
Taylor’s expansion about z = 0:

oD 2 9D 2} o ' o'
D(x,z,t) = D(x,0,¢) + z— (H0,1) + — x,0,0)+— x,0,1) +— x,0,2)--+
(x,2,0) = B(x,0,2) 02/) 2822( ) 3!2223( ) 4!024( )

Note that the zero vertical velocity at the bottom ensures
that all odd derivatives @(X 0.0) vanish from the

n

/4

Taylor expansion. In addition, the Laplace equation allows
us to convert all even derivatives with respect to z
to derivatives with respect to x. FD(x,z,0)  OD(x,z,1)
>— 2ty —— =
o’ oz*

0

s
41 o

&? (x,0,6)+

Modified Taylor's expansion: @(x,z,7) ~ O(x,0,t) — % 2
X
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(x,0,0)-
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Check linearized equations and their solutions:
Bernoulli equations --
Bernoulli equation evaluated at z =/ + {'(x,7)
SOERD | (e =0
ot
Consistent vertical velocity at z = h + {'(x,t)
_0D(x,z,t)  O0g(x,1)
Oz ot ohec
Using Taylor's expansion results to lowest order

=0

oz ox* ot ot ot

0*D(x,0,¢ 0 D(x,0,¢
000 _ TG00
ot Ox

Decoupled equations:

=>linear wave equation with c2=gh
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Analysis of non-linear equations --

Bernoulli equation evaluated at surface:

2 2
0D(x,2,1) . 1 (6(1)(x,z,t)] . ( 6(1)(x,z,t)] gl =0,
a2l o o .
Consistency of surface velocity
0P(x,z,1)  0P(x,2,0) 01 _dg(nD|  _
oz ox ox o s

Representation of velocity potential from Taylor's expansion:

2> &’ z* o'd
D(x,z,t) = D(x,0,1) ———(x,0,1) + ——(x,0,7)---
(x,z,0) = D(x,0,1) zaxz( )4!ax4( )
1/15/2019 PHY 711 Fall 2019 - Lecture 32
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Analysis of non-linear equations -- keeping the lowest
order nonlinear terms and include up to 4th order
derivatives in the linear terms. Let ¢(x,7) = ®(x,0,7)

Approximate form of Bernoulli equation evaluated at surface: z=h+¢

2
09, (h4g) O 0¢ 2¢
h =0
3t 2 owox’ 2 o é’) tee
2 A3 2
XN
6t 2 oo 2\ ox
Approximate form of surface velocity expression :

- Yorcun ) H2L -

These equations represent non-linear coupling of ¢(x,7) and &'(x,?).

11/15/2019 PHY 711 Fall 2019 — Lecture 32

19

19

. o9 13, a¢ :
Coupled t ——X+— +g¢ =0.
oupled equations: 8t 5 6t(3x p. g¢

o¢ JL@J?C
((h+§(xt)) ] T

Traveling wave solutions with new notation:
usx—ct  f(x.0)=yu) and (x.0)=n)
Note that the wave “speed” ¢ will be consistently

determined
dy() b’ d’y@) 1 (d 7)Y
-— +— + =0.
a2 e 2\ ) T

7((h+n(u))dz(u)j Rdiyw  dn@ _,

6 du du

PHY 711 Fall 2019 ~ Lecture 32
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Integrating and re-arranging coupled equations
dy(u) ch® d’ (u) (d;((u))
+ =0.
¢ du 2’ 2\ du &)
g k1 g Mg g o,
=—2p+—y"-— r-Snp-—=p"-2—
=ty ) m e s
d;{(u)J nd 2 dn()
h+ =0.
(( 7(u)) P i
=(h+7 )dl(“) P | piy=0
6 du
Now we can express %:Z' in terms of 77:
u
2 2
' 8, 8 &
= cn 2677 2c3’7
21




Integrating and re-arranging coupled equations — continued --

g kg ., g ) kg
h+n)| —=n-——=n"-2=n" |+—=n"+cn=0
( 77)( e 26377] P
gh) gh' . g ghj 2
S| 1= - -2 1+22 |2 =0
( czjﬂ 3(:277 cz[ 2c g

h? 2
=>(1—%)n(u)—§n"(u)—%[n(u)] -0,

Note: ¢ =gh+..
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Expressing modified surface velocity equation in terms of 7(u):
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Solution of the famous Korteweg-de Vries equation

Modified surface amplitude equation in terms of 7

= [1 -
Soliton solution

o [3m, x—ct
) = —ct)=n, sech’| ,[—~ ——
S0 =n(x=ct)=n, [,/ PR J
gh o :

c= [—2—— ~./gh|1+22| where 7, is a constant
\ion Ve ( ZhJ To
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h; h? 3 2
Lf ]n(u)—?ﬂ“(u)—ﬁ[ﬂ(u)] =0.

23

Steps to solution

B N R v
[1 62]77(14) 377 (u) 2h[77(u)] 0.

Let l—h—g*@

U nos 3 >
= ES -— - =0.
== 100 =" = [7)]

du\ 2h

Integrate wrt « and assume solution vanishes for u — o

. . | d My 2 n 2 1 3
Multiply equation by 77'(u) = —| 2 (M)*?'f (u) *ﬂﬂ ) |=0

o

2
L)Ly~ =0

) 3,
12w =50 (w)(17, = n(w))

d. 3
7 I Jh:}du =>nu) = i 3
7 =1) coshz[ TZ(;"]

ture 32 24
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() = n(x —ct) = 7, sech’ [ﬁ xZ_th]

11/14/2019
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Relationship to “standard” form of Korteweg-de Vries equation
New variables:

=21, X= ix’ and 7= 3 _d .
\2nn 2k 25,0

Standard Korteweg-de Vries equation

3
a—?+6na—n+a—2: .
ot X Ox

Soliton solution:

n(x,1)= g sech’ [@(E - ﬂ?)},
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More details
Modified surface amplitude equation in terms of 7:

_hg 3 2 _
(1 Cz]”(“) 37 ® 2h[ﬂ(u)] 0.

5

ot du’  ox du’
Derivative of surface amplitude equation:

Some identities: %:17@' 6i=7cd717' a—n=ﬂ

N B .3
—=n'-—n"-=nn'=0.
h7 377 hﬂ’?

Expression in terms of x and #:
2 A3
_mon _Won 3,0n_
chot 3 0x h oOx
Expression in terms of X and 7:
3
64 + 6776—” + a—lz =0
ot & x
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Summary

Soliton solution

%x—ct

x,t) =n(x—ct) =n, sech’
o) =n(x—ct)=n, PR

gh o :
c= |[———= ,[ h|1+—=-| where 7, is a constant
P S G d
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Photo of canal soliton http://www.ma.hw.ac.uk/solitons/
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John Scott Russell and the solitary wave

Over one hundred and fifty years ago, while conducting
experiments to determine the most efficient design for canal
boats, a young Scottish engineer named John Scott Russell (1808-
1882) made a remarkable scientific discovery. As he described it
in his "Report on Waves": (Report of the fourteenth meeting of
the British Association for the Advancement of Science, York,
September 1844 (London 1845), pp 311-390, Plates XLVII-LVII).

i https://www.macs.hw.ac.uk/~chris/scott russell.html

““Iwas observing the motion of a boat which was rapidly drawn along a narrow
chanel by a pair of horses, when the boat suddenly stopped - not so the mass of
water in the channel which it had put in motion; it accumulated round the prow of
the vessel in a state of violent agitation, then suddenly leaving it behind, rolled
forward with great velocity, assuming the form of a large solitary elevation, a
rounded, smooth and well-defined heap of water, which continued s course
along the channel apparently without change of form or diminution of speed. T
followed it on horseback, and overtook it still rolling on at a rate of some eight or
nine miles an hou, preserving its original figure some thirty feet long and a foot
10 a foot and a half in height. Tts height gradually diminished. and after a chase of
one or two miles I lost it in the windings of the channel. Such, in the month of
August 1834, was my first chance interview with that singular and beautiful
phenomenon which T have called the Wave of Translation".

(Cet passage en francais)

This event took place on the Union Canal at Hermiston, very close to the Riccarton campus of
Heriot-Watt University, Edinburgh.
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