PHY 337/637 Analytical Mechanics
12:30-1:45 PM TR in Olin 103

Notes for Lecture 12
Review

1. Calculus of variation methodology
2. Lagrangian formalism

3. Hamiltonian formalism
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Presenter Notes
Presentation Notes
Here we will review many of the main points covered in this class.


PHysICs

THURSDAY

CoLLoQuiumM .
OcTOBER 5TH, 2023

Adaptive Optics and Interference Theory Enable Measurement of
Retinal Function

Imaging of the retina has long been part of an ophthalmic exam, but
the optics of the eye have aberrations that limit the quality of those
images. Using adaptive optics, a technique originating in astronomy;,
researchers can measure and correct for the eye’s optical
aberrations thereby enabling diffraction limited imaging of the living
retina. With this technology, individual photoreceptors and other
retinal cells can be visualized noninvasively in the living human eye.
My talk will provide an overview of adaptive optics imaging and will
discuss how adaptive optics in combination with interference of
light waves allows assessments of photoreceptor function.

4 pm - Olin 101
Refreshments will be served in the Olin

lobby beginning at 3:30 pm
Jessica [. W. Morgan,
Ph.D.

Associate Professor of Ophthalmology

WAKE FOREST Scheie Eye Institute

UNIVERSITY University of Pennsylvania
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Course schedule

In the table below, Reading refers to the chapters in the Cline textbook , PP refers to textbook section listing
practice problems to be discussed at the course tutorials, and Assign is a link to the graded homework for the
lecture. The graded homeworks are due each Tuesday following the associated lecture.

(Preliminary schedule -- subject to frequent adjustment.)

Date Reading |Topic PP |Assign

1 [Tu, 8/29/2023 |Ch.1 & 2 |(Introduction, history, and motivation 2E [#1

2 |Th, 8/31/2023 |Ch.5 Introduction to Calculus of variation S5E |#2

3 [Tu, 9/05/2023 |Ch.5 More examples of the calculus of variation |SE [#3

4 Th, 9/07/2023 |Ch. 6 Lagrangian mechanics 6E |#4

5 |Tu, 9/12/2023 |Ch.7 & 8 |Hamiltonian mechanics 8E [#5

6 [Th, 9/14/2023 |Ch.7 & 8 |Hamiltonian mechanics 8E

7 |Tu, 9/19/2023 |Ch. 13 Dynamics of rigid bodies 13E |#6

8 [Th, 9/21/2023 |Ch. 13 Dynamics of rigid bodies 13E [#7

9 Tu, 9/26/2023 |Ch. 13 & 11 |Review of rigid bodies and intro to scattering |11E |#8

10 Th, 9/28/2023 |Ch. 11 Scattering theory 11E [#9

11 [Tu, 10/3/2023 |Ch. 11 Scattering theory 11E

12 [Th, 10/5/2023 Summary and examples Take home exam start

13 Tu, 10/10/2023 Summary and examples Take home exam due
Th, 10/12/2023 |[Fall Break

14 Tu, 10/17/2023 Summary and examples
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Presenter Notes
Presentation Notes
This is the schedule posted on the webpage.   


Review of the concept of the calculus of variation

« Based on the notion of minimization, but
applied to an integral form
* Optimization performed to find a function —
such as y(x).
 Uses —
» Various optimization problems in a variety
of applications
* Optimizing the “action integral”
(Hamilton’s principle)
* Richard Feynman applied it to develop an
alternative approach to quantum
mechanics called path integrals



Functional minimization of an integral relationship
Consider a family of functions y(x), with fixed end points

Find the function y(x) which extremizes L ({ y(x), ﬂ} : xj.

Necessary condition: oL =0

11

Example: y 0'6::

1,1 1

L= j\/(dx)2+(dy)2 ole—"onrr— |

(0,0) 0 0.2 04 06 0.8
X



Difference between minimization of a function V(x) and
the minimization in the calculus of variation.

Minimization of a function — V(x)
=2>Know V(x)  =>Find x, such that V(x;) is a minimum.

Calculus of variation

For x, < x < x, want to find a function y(x)

that minimizes an integral that depends on y(x).
The analysis involves deriving and solving a differential

equation for the function y(x).



10/05/2023

0 02 04 06 0.8
X

Sample functions:

1
v (x)=x L= j 1 +—dx =1.4789
0

4_
Y, (%) = x L=j\/1+1dx=\/§=1.4142
0
1
y3(x) = x° L= [N1+4x" dx =1.4789
0
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After some derivations, we find

| 5%
dx

X,y

jx,y

A
-]

L/
oy

B
= | =
Y ). &

dx

Note that this is a
“total”’ derivative

10/05/2023

(o
_J (@jx

of

]x,dy v+ _[ G(dy / dx)
Cdl( o

o dx |\ O(dy/dx)

" dx

d

o

dx

*
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(5(dy / dx)jx,y

=0 forallx, <x<x,

oydx=0 forallx, <x<x

J

dx

f



Example: End points-- y(0)=0;y(l) =1

L

J ( jdx :f({y<x>,%},xj: \/1+(

|
(%j (a(dij;dx)jx’y =0

o d{ dy | dx ]o

x| \J1+(dy / dx)’
Solution:
( \
dy / dx — K ﬂ — Kv _ K
\/1+(dy/dx)2 dx - 1_ K2
. y

= y(x)=K'x+C P(x) = x



Review: for f ({y(x),?/},x}
X

a necessary condition to extremize _[ f ({ V(x), Zy } de ;

X

of d of | |
(f%ldy dx{[@(dy/dx)jxj (3 Euler-Lagrange equation

dx

Note that for f ({y(x),ﬂ},xj,

dx
I _(f\, (o 4 dy{@j
dx \dy )dx \o(dy/dx))dx dx \ ox

| d of dy_I_ of d dyJ{@j
dx\o(dy/dx)))dx \o(dy/dx))dx dx  \ ox

d . of dy)_(of Alternate Euler-Lagrange
oldy/dx)dx) \ ox equation
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Comment on partial derivatives versus total derivatives.

For a simple function y(¢), the notation means that y is

a function only of ¢ so that dy 1s well defined.

dt
For a more complicated function of several variables,

f(a(t),b(t),t) the notion of partial and total derivatives

needs to be considered.

df (a(1),b(t),1) _
dt
(5f(a(f),b(f),f)j da +(5f(a(f),b(f),f)j @Jr(@f(a(f),b(f),f)j
Oa by At ob L at Ot .
— What happens when b(7) = @? a. No problem
dt b. Solvable problem
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Also note that

j(df (a(tc)z; b(1),t) jdt = f(a(t,).b(t,),t, )~ f(a(t,),b(t),t,)

We are now going to shift notation in order to
apply the calculus of variation formalism to
Hamilton's principle and Lagrangian mechanics.
X —>1

y(x) > q(?)

dy

d—x—W(f)



Application to particle dynamics
Hamilton’s principle states that the dynamical trajectory of a
system is given by the path that extremizes the action integral

S = jL q.q}:t)dt jL({yZ} jdt

Simple example. vertical trajectory of particle of mass m subject
to constant downward acceleration a=-g.

: d’
Newton's formulation: m dtév =—mg
Resultant trajectory: y() =y, +vit—Lgt’

Lagrangian for this case:

1 (dy ’
L=—m|—=| —m
2 (dtj &



Now consider the Lagrangian defined to be :

y(f) — f
Kinetic Potential
energy energy

In our example:

o)==l ) e

Hamilton's principle states:

Ly
S = j L({ y(t),j—);},tjdt 1s minimized for physical y(7):
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Condition for minimizing the action 1in example:

1 (ay)
S=\l—m| = | —m dt

Euler-Lagrange relations:

d .
j—mg—amyzO

ddy 1 2
S . )=y +vi—Lgt



Extension of these ideas to multiple coordinates due to
multiple dimensions and/or multiple particles.

1 particle with 1 5 many particles with
degree of freedom multiple degrees of
freedom

S :fL(q,q,z)dt = S=[L({g,}.4,}.t)dt
for examplt;: L({q,}.1q,}.t)= L(x,y,;,)'c,j/,z',t)
1 particle+3 Cartesian dimensions
or LW, 012015 505 14851)

N particles+3 Cartesian dimensions
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Another example: L = L({qa bg ht)=T-U
d oL 0L
dt 0q, 0q,

L=L(a,B,y,a,p, y)=+1 (a sin ,B+,B) (acos,8+7/) — Mgd cos

=0

jt 22 jt([asm B+ (acos,BJr;/)cos,b’)
d oL d @L
- = 1
dt 0 2\ 1A)= B
doL d

e dt(13(dcos,8+7))20

Do you remember this example?
a. With fondness
b. Without fondness
c. With different notation



Here we can see some possible benefits of this
approach --

L(e. f.y:a. . 7) =31, (67 sin® B+ f*)+4 1, (crcos f+ )~ Mgd cos f
d oL d
dt oo dlt

Lasin® B+1, (dcosﬂ+7})cosﬂ) =

Constant in time

d oL d : 8L
dt@,B:dt( “8) op

doL d
dt 0y dt

([3 (dcos,b’+7)) =0

Constant in time
10/05/2023 PHY 337/637 Fall 2023 -- Lecture 12 18



Introducing the Hamiltonian --

Lagrangian picture
For independent generalized coordinates g_(#):

L=L({g,®}{g, O})
d oL oL
dt 0q. 0Oq

= Second order differential equations for g_(¢)

=0

o)

Switching variables — Legendre transformation

Define:  H =H({g, ()} {p,()}1)

L
szqo,pa—L WherepG:%

oL oL oL
dH =N dp +p di —dg - a5 |-ZL a
;(% p_ + pddq, ” q, 5 qgj >



Hamiltonian picture — continued

H=H({g, O} {p, 0O}1)

H:Zq'gpa—L where p0=a—,L
> aq.,
oL oL oL
dH = g dp +p dg —dg - di |-t
Z,[qa R qa) >
— (8—qua+aﬂdp6]+a—l{dt
~\ 0q_ op., Ot
_ . _oH oL d oL .  O0H aL
T . oq. di 0g. ° oq. ot
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oH
ot

20



Recipe for constructing the Hamiltonian and analyzing
the equations of motion

1. Construct Lagrangian function: L= L({g_(H)},{g.()},?)

: L
2. Compute generalized momenta: p_ = 8_

oq ..
3. Construct Hamiltonian expression: H = Z q.p,—L

4. Form Hamiltonian function: H = H ({qa (t)}, { D. (t)}, t)
5. Analyze canonical equations of motion :
dq OH dp,  OH

O

dt ~ op. it~ oq_



Questions for discussion

d.

b.

Given that we need to start with the Lagrangian,
do we really need the Hamiltonian

Given that for all of the examples we have
discussed, we get the same answers from
analysis with Newton'’s laws and Lagrangian and
Hamiltonian formalism, how does one pick the
appropriate approach?
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