PHY 337/637 Analytical Mechanics
12:30-1:45 PM TR in Olin 103

Notes for Lecture 13
Comments on “modern” uses of
methodologies of analytical mechanics

1. Atomistic viewpoint of materials

2. Computer simulation to analyze effects of
atomic scale phenomena on macroscopic scale

3. Concept of phase space and the Liouville
theorem

4. Examples
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Course schedule

In the table below, Reading refers to the chapters in the Cline textbook , PP refers to textbook section listing practice problems
to be discussed at the course tutorials, and Assign is a link to the graded homework for the lecture. The graded homeworks are
due each Tuesday following the associated lecture.

(Preliminary schedule -- subject to frequent adjustment.)

T‘Date ‘Reading ‘Topic ‘PP ‘Assign

’T‘Tu, 8/29/2023 ‘Ch. 1&2 ‘Introduction, history, and motivation ‘2E ‘ﬂ

’?‘Th, 8/31/2023 ‘Ch. 5 ‘Introduction to Calculus of variation ‘SE ‘ﬂ

’;‘Tu, 9/05/2023 ‘Ch. 5 ‘More examples of the calculus of variation ‘SE ‘ﬂ

4 [Th, 9/07/2023 [Ch. 6 Lagrangian mechanics GE [#4

5 |Tu, 9/12/2023 |[Ch. 7 & 8 |Hamiltonian mechanics 8E [#5

6 |Th,9/14/2023 [Ch. 7 &8 [Hamiltonian mechanics 8E |

7 |Tu,9/19/2023 [Ch.13  |Dynamics of rigid bodies 13E 46

8 |Th,9/21/2023 [Ch.13  [Dynamics of rigid bodies 13E[#7

’?‘Tu, 9/26/2023 ‘Ch. 13& 11 ‘Review of rigid bodies and intro to scattering ‘IIE ‘ﬂ

10Th, 9/28/2023 [Ch. 11 [Scattering theory 11E #9

11Tu, 10/3/2023 [Ch. 11 [Scattering theory L1E|

’E‘Th, 10/5/2023 ‘ ‘Summary and examples ‘ ‘Ta.ke home exam start
’E‘Tu, 10/10/2023 ‘ ‘Comments on more modern uses of analytical mechanics‘ ‘Take home exam due
| |Th, 10/12/2023|[Fall Break | ]

14Tu, 10/17/2023 | Course summary ]
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Some of the contributors to
basic physics principles

Calculus <
Newton ~1670
Leibniz 1675

Newton ‘L Leibniz
Newtonian mechanics Caleculus of variations
Gravitation Bernoulli 1696 <
Newton 1677 Euler 1744

v

D*Alembert’s Principle

v

Lagrangian mechanics
Lagrange 1788

T

Hamilton’s Principle
1834

v

Hamiltonian mechanics
Hamilton 1834

Hamilton-Jacobi theory Hamilton
~ Jacobi 1843

A

~

Statistical mechanics

—— | —» Bemoulli 1738

Equations of motion Maxwell 1859 -
Boltzmann 1864 Jacobi

Y

Applications - Relativistic mechanics
Central force two-body motion Einstein 1905
Motion in non-inertial frames ¥
Dynamics of rigid bodies Quantum mechanics
Single and coupled oscillators = Heisenberg 1925 "
Non-linear dynamics and chaos csosisoumn. il Einstein
Dirac 1928

Figure 1.4.1: Chronological roadmap of the parallel development of the Newtonian and Variational-principles approaches to classical mechanics.
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Is analytical mechanics too old to be useful?

Possible advantages
« Lagrangian mechanics = systematic scheme for
treating large system of particles
« Hamiltonian mechanics =» notion of phase space



With the Hamiltonian formalism comes the notion
of phase space --

H = H({q, 0} {p, ©)}.1)

dq oOH OH
< = = constant g_ 1if — =0
dt  Op, P,
d H OoH
5 g S —> constant p_ 1f P =0
! 95 1o Special property for H :

ad 5H ﬁ . |, OH OH oM O ( oM | oH _oH
= Z pO_ + — Z + —
QD - ot >\ 0q. Op, Op.\ 0Oq, 51‘ ot

Similarly for an arbitrary function: F=F ({% O}, {p, (1)}, t)

Z@_F L OF _ZaFeH OF OH | oF
oq. Ie op, P oq. Op. Op._ 0Oq. i
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Presenter Notes
Presentation Notes
Now an interesting addition property of the Hamiltonian formulation.


For an arbitrary function: F = F ({qa 0}, {p, )}, t)

dF oOF . OF OF OH _ OF OH ) oF
— =Y —q¢, +—p, |[+— Z

>\ 0q_ op,, oq_ Op, apa oq._ 8t

Short and notation -- Poisson brackets

oF oG oF 0G
FG = — =—|G,F
[ ]PB Z(aqa apa ap aq j [ ]PB

So that: ar _ =|F, H] 8F
dt 8t
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Introducing the Poisson Bracket.


Poisson brackets -- continued:

oF oG OF 0G
FGl,, = — =—|G,F
Fal, =3[ 22050 [gr),

(o}

Examples:
[x’x]PB =0 [’x’px ]PB =1 [x,py ]pB =0
L] =L,

Liouville theorem

Let D =density of particles in phase space :

ab _ D.H],, +9P o In the following slides we will

dt ot justify this statement using
several approaches.


Presenter Notes
Presentation Notes
Examples followed by introducing the Liouville theorem.


.

Phase space

Phase space is defined at the set of all

coordinates and momenta of a system:

For a d dimensional system with N particles,

the phase space corresponds to 2dN degrees of freedom.

The notion of density of particles in phase space is
simply the ratio of the number of particles per unit phase
space volume. It seems reasonable that under
conditions where there are no sources or sinks for the
particles, that the density should remain constant in
time.


Presenter Notes
Presentation Notes
Notion of phase space



Phase space diagram for one-dimensional motion due to
constant force

p
& p2 | : x | | :
Hip)=Lofr per,  i=L
m m
. |
p.(t)=p,. + Ft xi(t)=x0i+l;2’t+—E)t2

2
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Example of time evolution of phase space.


Phase space diagram for one-dimensional motion due to
spring force

P
I:II_I:I:-I- I::'T' I::' I:I'|7I I:I'I-I- [I'.Ilﬁ- I}?S X I 1|7' ll-l-
p- 1 2.2 2 P
H(x,p)=—+—mw’x ) =—mw'x  X=—
( p) 2m 2 b m
p,(t) = p,; cos(awt +6,,) x () = Lo sin (et +6,,)
0,
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Another example of time evolution of phase space.


B
Liouville’s Theorem (1838)

The density of representative
points in phase space
corresponding to the motion of a
system of particles remains
constant during the motion.

Joseph Liouville

lived from 1809 to 1882

Denote the density of particles in phase space: D = D({qa (t)}, { D, (t)}, t)

dD oD . oD . oD
- = - qo_ _|_ - po_ + -
dt T\ oq, op.. Ot
: L dD
According to Liouville's theorem: — =0

dt


Presenter Notes
Presentation Notes
Application to the density of phase space – Liouville theorm.


.

Liouville’s theorem

P X

—>

A 1
(X,p*+A4p)

(x+4x,p+A4p)
oD
Ot —>
(x,0) pI (x+4x,p)
>

10/10/2023

X
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Diagram of flow in phase space.


Liouville’s theorem -- continued I
A

(x,p+A4p) (x+Ax,p+A4p)

p X oD

(x,P) pI (x+4x,p)

>
oD . X . .y
= = time rate of change of particles within volume
[
= time rate of particle entering minus particles leaving
oD . oD .
= —X — —p

Ox
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Some details.


Liouville’s theorem -- continued I
A

(x,p+A4p) (x+Ax,p+A4p)

>
X
oD oD . oD .
A Ty
ot ox op
oD oD . oD . dD
+—Xx+—p=0=—
ot 0Ox op dt
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More details.


Review:

Liouville’s theorem:
Imagine a collection of particles obeying the Canonical
equations of motion in phase space.

Let D denote the "distribution" of particles in phase space :

D = D({% "'%N}’ {pl '"p3N}’t)
Liouville's theorm shows that :

D . o
cil_t =0 —> D 1s constant 1n time

Note that we are assuming that no particles are
created or destroyed in these processes.


Presenter Notes
Presentation Notes
Summary of Liouville theorem.


Another proof of Liouville’s theorem:

=

Continuity equation :
oD

~ — =V (vD)
vp

-

4

Note: 1n this case, the velocity is the 6 N dimensional vector:

\ :(rlarza'"rN’pl’pz’“'pN)

We also have a 6 N dimensional gradient:

V=(V,.V, ..V, .V,.V, ...V, )
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Another more formal derivation of Liouville


= _v.(vD
~—-=-V-(vD)
3N a a
= — | D)+——-A\p.D
Wlop . 8D . K7
=— -D L+
JZ‘ 4, ag, 1" o, p’_ Z::‘_@q,-

%4, %, __oH {_ 0*H ]: )

8qj apj quﬁpj 8pj6qj
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More details.


10/10/2023

oD

D s oD
0q, / op
3ZN:_8D
— q;+
j=1 8q] !

[ ap

—q;+
j=1 aq] !

—— D,

oD
op;

oD
op . ;

— D,

—— D,
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Derivation  of Liouville theorem


dD
dt
Importance of Liouville’s theorem to statistical
mechanical analysis:

0

In statistical mechanics, we need to evaluate the
probability of various configurations of particles.
The fact that the density of particles in phase
space is constant in time, implies that each point
In phase space is equally probable and that the
time average of the evolution of a system can be
determined by an average of the system over
phase space volume. Computationally this can be
approximated using molecular dynamics or

sampling methods.
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Modern usage of Lagrangian and Hamiltonian formalisms
J. Chem. Physics 72 2384-2393 (1980)

Molecular dynamics simulations at constant pressure and/or
temperature®

Hans C. Andersen

Department of Chemistry, Stanford University, Stanford, California 94305
{Received 10 July 1979; accepted 31 October 1979)

In the molecular dynamics simulation method for fluids, the equations of motion for a cillection of
particles in a fixed volume are solved numerically. The energy, volume, and number of particles are
constanl for a particular simulation, and it is assumed that time averages of properties of the simulated
fluid are equal to microcanonical ensemble averrges of the same properties. In some situalions. it is
desirable to perform simulations of a fluid for particular values of temperatore and/or pressure of under
conditions in which the energy and volume of the fluid can fluctuate. This paper proposes and discusses
three methods for performing molecular dynamics simulations under sonditions of constant temperature - \
and/or pressure, rather than constant epergy and volume. For these three metheds, it is shown that time }(’/
averages of properties of the simolated fluid are equal 10 averages aver the iscenthalpic—isobaric, Hans Andersen
canonical, and isothermal-isobaric ensembles. Each method is a way of describing the dynamics of a SR S )
certain number of particles in a volume element of a fluid while taking into accoun! the influence of  Frankiin Professor in Chemistry, Emeritus
surrounding pamicles in changing the energy and/or density of the simulated volume element. The

influence of the surroundings is taken into account without introducing unwanted surface effects.

Examples of siluations where these methods may be useful are discussed.
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This paper shows an example of Lagrangian and Hamiltonian mechanics use to make realistic simulations of real materials.


Jﬂz(p',r”,ﬁ,ﬂ) =; A ML +éﬂ ""ﬁz(nﬂﬂjbﬁx @, éJ

N hd
=@m@N w w20 ul@p,,) + (24 g,
i i< Jat

The Hamiltonian equations of motion are: 5.
% = Tgl_i‘ = ;gﬂ!‘ | {3.7a)
%? = % = pI.]T (3. 7c)
%It'l- =— % =-(3Q)™ (— 2(2m@*/%) ,'i; 7 m

+@/3 {‘);}p;,u’to‘”p,,h aaq) . {3. 7d)

These equations of motion for the scaled system can be
solved numerically to give the coordinates and momenta
as a function of time. Such molecular dynamics egl-
culations give trajectory for the scaled system: p*(s),
r* (), Qf), and 11{s).

The trajectory average of any function, G{p*,z* ,Q, 1),
M the coordinates and momenta of the scaled system is
lefived as in Eq, (2. 15).

(3.12¢)

Every state of the scaled system corresponds to a
unique value of ¥ and a unique point in the phase Space
of the original system for that volume V. (Note that

Il does not appear in thase equations, so each ¥ and
phase-space point in the original gystem corresponds
to a manifold of states of the sealed system. )

L2 B L

Using this correspondence, the calculated trajectory
for the scaled system can be used to generate a tra-
jectory for the original system. Along this latter tra-
Jectory, the volume varies with time.

vit)=Q(1) , (3.13a)
() =Q{t) 3p, (1), (3. 13b)
p ) =7, )/ Q)73 (3. 13c)

The equations of motion for this trajectory can be de-
rived from (3. 13} and (3.7}

5 Py, dlov

dt . 3k at » {3-14&)
N

dll. - ' 1 alav

l'jt - “;;-1 'P"‘u (r‘,}_ 3p| df ] (3- 1‘“3)

N
Mdv 23 prp 1 ,
_—I—df =—ﬂ+(§'§ 2m "'3_‘§1 T'”l! (3’”))/1".
{3. 14¢)
These equations are not the same as Hamilton's equa-

C=timr! [ - tions for the original gysteo. Compare Eqs, (2.6). In
. IJ; #CE", 5 0, o, n) . (3.8) the limit, however, that the mass of the piston, M, be-

Ve agonrnn that dhi; dlace oo . . » . . tramvias Infinitale loawmws — 3 sws # as 21
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“Molecular dynamics” is a subfield of computational
physics focused on analyzing the motions of atoms in
fluids and solids with the goal of relating the atomistic
and macroscopic properties of materials. ldeally
molecular dynamics calculations can numerically
realize the statistical mechanics viewpoint.

Imagine that the generalized coordinates {qo, (t)} represent
N atoms, each with 3 spacial coordinates:
L=L({q,(0}.14,0)}.,t)=T~U

For simplicity, it 1s assumed that the potential interaction

is a sum of pairwise interactions:

Uie") = 2 ulr, )} . (2. 1)

<4


Presenter Notes
Presentation Notes
Brief introduction to the approach of H. C. Andersen


r.

2—2uQri—rj‘)

L=L{{rO}L 0] =D tmi

i i<j

=»From this Lagrangian, can find the 3N coupled
2nd order differential equations of motion and/or
find the corresponding Hamiltonian, representing
the system at constant energy, volume, and
particle number N (N,V,E ensemble).

10/10/2023 PHY 337/637 Fall 2023 -- Lecture 13

23


Presenter Notes
Presentation Notes
Schematic drawing of system modeled.


.

Lagrangian and Hamiltonian forms
L=L({r 0} {50}) = 2 m i - 2w )
] i<j
Euler-Lagrange equations:
d2

| d;i - _Z”'(“?‘ ‘rf‘)

m.
<j ‘rl _r]‘

I, —l’j

Hamiltonian formulation:

p;, = m}r,
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Lagrangian and Hamiltonian of particle system.


.

Digression on numerical evaluation of differential equations
Example differential equation (one dimension);

2
dx—f(t) Let t=nh (n=12,3..)

dr*
x,=x(nh); f = f(nh)

Euler's method :

1
X . =X +hv +§h2fn

Vn+1 — Vn + hf;a X

Velocity Verlet algorithm :

1
X, . =X +hv +§h2fn

1
Vn+1 :Vn +§h(fn +fn+1)


Presenter Notes
Presentation Notes
The equations cannot generally be solved analystically so that numerical methods must be used.    This slide shows some of the ideas for numerical devaluations.


H. C. Andersen wanted to adapt the formalism for
modeling an (N,V,E) ensemble to one which could
model a system at constant pressure (N,P,E).

g

f

P constant,
V variable

V constant

10/10/2023 PHY 337/637 Fall 2023 -- Lecture 13
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Back to the ideas of H. C. Andersen.


PV contribution to
Andersen's clever transformation: potential energy
Letp, =1,/ Q"

Original Lagrangian: L = L({r,()},{f,(")})=D_Im,|i |2 -u (‘l} -r, ‘)

I i<j

L= L({pl (t)} ,{bi(t)} 9Qa Q) = QzBZ%mi |p,—|2 B ZM(Q1/3 ‘P, _ p]‘) +%MQ.2 B OlQ

i<j

kinetic energy of
“balloon”
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Andersen’s approach of “extending the Lagrangian to include pressure effects.


= Lo, 0} 5, (01.0.0)= 0 Y dmp | - X u
- =§—i—mQ2/3P
oL :
H=@:MQ
‘Tt ‘2 & I’
szQm ; ( J‘) 2M
dpi __ & dQ = H
di m.Q2/3 dt M
dm, 1/3 1/3
E _Q Zu (Q ‘P P‘)‘p P‘

(QIB‘pi _pj‘)_*_ %MQZ —O(Q

Z |n| : Zu'(Qm‘pi_p]“)‘pi_p]“_a

2m Q2/3 3Q2/3 =

10/10/2023
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Some details.


Relationship between system representations

Scaled Original
o) = 40
Q1/3pi(t) — ri(t)
T, /Q1/3 — P;
Equations of motion in “original” coordinates:

dr, p, +lr dInV

d m 3 dt

@ B r,' _rj | B _l dan

dt ; r rj‘u ql‘,- rj‘) 3P



Presenter Notes
Presentation Notes
More details.


®
Physical interpretation:

a < Imposed (target) pressure

[ Zp___Z‘r —r. }M (‘1} —rj‘)) <> Internal pressure of system

]<z

Time dependence

dzz/ =—a+—( L r, —rj‘)j
395

dr o

Averaged over many time steps.

d’v 1{2<p,p, |1 ,
u i) = a=<;(;z%—;;\n—w<\ri—rj\>]>



Presenter Notes
Presentation Notes
Here alpha represents the controlling pressure.


Example simulation for NPT molecular dynamics
simulation of Li,O using 1500 atoms with =0

g,

™

-

T

-

w

b ]

%

-

|

-\.'__h

e

‘.._.‘

.

iy

W % W% B % G B % %

i e % ¥ b ¥ ] i e

MNWWWNQNN

W w % N \ ™~ % % \
T e e ¥ = e e e e
W % % % & % & % %N
. . ) e = e e e &
W % % % % h % *Ia \

ﬁ%‘b%%\rﬁ%ﬁ

= i = ] e e e = &

‘%%N%W%ﬁ%

o L. =8 N B L ¥ L

& % % &% & &% & & &

F % e .'-h Lo > e i e

W % W % W &% B & %

’_ ’,_ ’_ l_ ,

%

B

b

i

&y,

s —
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Use LAMMPS code
http://LAMMPS.sandia.gov
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An illustration of  simulation for a particular system.

http://lammps.sandia.gov/

[:] 15 k

0.5

P (GPa)

-0.5

a=0

-1.5

10850
10800 |-
’_\}D?ED
~~—"10700

10650

100

200 300 400 500

t (ps)

10600

10/10/2023

100

200 300 400 500

PHY 337/637 Fall 2023 -- Lecture 13 32


Presenter Notes
Presentation Notes
Plot of volume and pressure variation for a particular simulation.


MOLECULAR PHysIcs, 1984, VoL. 52, No. 2, 255-268

A molecular dynamics method for simulations in the
| canonical ensemblet

by SHOICHI NOSE?

Division of Chemistry, National Research Council Canada,
Ottawa, Ontario, Canada K1A 0R6

(Received 3 October 1983 ; accepted 28 November 1983)

A molecular dynamics simulation method which can generate configura-
tions belonging to the canonical (T, V, N) ensemble or the constant
temperature constant pressure (7, P, N) ensemble, is proposed. The
physical system of interest consists of N particles (f degrees of freedom), to
which an external, macroscopic variable and its conjugate momentum are
added. This device allows the total energy of the physical system to
fluctua'ate: .'.I‘hf.: equilibrium distribution of the energy coincides with the

10/10/2023 PHY 337/637 Fall 2023 -- Lecture 13
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Another famous paper controlling the temperature rather than the pressure.


Nose”'s Lagrangian:

L({r ), (1.5) :%Zml.szi‘f +%ka'~2 ~g({r )~ (f + DAT, Ins

3

fictitious mass

velocity scaling

Equations of motion:
E (m;s? #)= ..._;f,
r;

dt

NI I

2
m;s2or; s

r,.

Q§= E mis'-.is_(f'l' l)kTeq‘.
. §
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Nose’’s    idea to control the temperature using an “extended” Lagrangian.


Time averaged relationships

. L (f+DKT,
§ = msr — =
0s= Yt - L)

S

-0 (gt} L220

10/10/2023 PHY 337/637 Fall 2023 -- Lecture 13
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Showing how the scale factor s behaves on averate.


Time averaged relationships

< - mfa ;.3) —(f+1 )kTeq<ls>

Hamiltonian

2 2
Hi= ) i ‘|"‘;5(")'|':ﬂi-f-(f+1):‘21",,.,,{l Ins,

20

2 .
where p, =ms°r,

10/10/2023 PHY 337/637 Fall 2023 -- Lecture 13
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More details.


B

In statistical mechanics, the thermodynamic functions can be analyzed
in terms of a partition function. A canonical partition function for a system

with N particles at a temperature 7, can be determined from the phase space

integral:
Z, = L d>N7 dle_? e—m{ﬁ},{@})/knq
N!
—2
where Z((T}.(p,}) =Y. -+ ¢((T )

T 2m,

For such a canonical distribution the average value of a quantity F({T},{p,})

is given by

(FAT}.(.)), = 7N L [@F @ p e TR p (L (B,

Nose’ was able to show that his effective Hamiltonian
well approximates such a canonical distribution.


Presenter Notes
Presentation Notes
Some references to the related statistical mechanics developments.


Relationship between Nose”s partition function and
the canonical partition function:

1 20O \112
= Z..
YA (kTﬂq) exp (E/kTqy)Z,

(f+1)

S

constant factor

Some details:
Starting with partition for microcanonical ensemble:

Z--——]'dpsj'dsjdpj'dr (22m5*+¢(r}+

o+ (+ AT In s— E)
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More statistical mechanics.


B
Z-—-—Hmdsfdpwr (E 5+ 8(r) +55 Q+(f+1)kT¢qlm E)

Change variables: p, =

t4|:_5

o(s—s,)
[8'(s) ]

Note that [ ds 5(g(s))=| ds

2
where (f + KT, Ins, =E—§é— i 2"’;‘1 - 4({%})

b NP =
(f +DiT,,

S, = €Xp
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Details.


When the dust clears --

1 [ 220\
Z=5T ( ; Tﬂq) exp (E/kToq) Ze.

S

constant factor

=>» The Nose’ ensemble should sample phase
space in the same way as does the canonical
ensemble at T

10/10/2023 PHY 337/637 Fall 2023 -- Lecture 13
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More details.


.

From LAMMPS simulation (using modified Nose’ algorithm)

330
325
320
315
310
305
300

T(K)

295
280
285
280

275

10/10/2023

T | T T
'2.dat'u 2:3 ——
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How does this really work?        We see that the approach allows fluctuations in the temperature, but the average is apparently controlled.
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